↓ Skip to main content

The leishmanicidal activity of oleuropein is selectively regulated through inflammation- and oxidative stress-related genes

Overview of attention for article published in Parasites & Vectors, August 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The leishmanicidal activity of oleuropein is selectively regulated through inflammation- and oxidative stress-related genes
Published in
Parasites & Vectors, August 2016
DOI 10.1186/s13071-016-1701-4
Pubmed ID
Authors

Ioannis D. Kyriazis, Olga S. Koutsoni, Nektarios Aligiannis, Kalliopi Karampetsou, Alexios-Leandros Skaltsounis, Eleni Dotsika

Abstract

Much research effort has been focused on investigating new compounds derived from low-cost sources, such as natural products, for treating leishmaniasis. Oleuropein derived from numerous plants, particularly from the olive tree, Olea europaea L. (Oleaceae), is a biophenol with many biological activities. Our previous findings showed that oleuropein exhibits leishmanicidal effects against three Leishmania spp. in vitro, and minimizes the parasite burden in L. donovani-infected BALB/c mice. The aim of the present study is to investigate the possible mechanism(s) that mediate this leishmanicidal activity. We determined the efficacy of oleuropein in elevating ROS and NO production in L. donovani-infected J774A.1 macrophages and in explanted splenocytes and hepatocytes obtained from L. donovani-infected BALB/c mice. We also assessed the expression of genes that are related to inflammation, T-cell polarization and antioxidant defense, in splenocytes. Finally, we determined the ratios of specific IgG2a/IgG1 antibodies and DTH reactions in L. donovani-infected BALB/c mice treated with oleuropein. Oleuropein was able to elevate ROS production in both in vitro and in vivo models of visceral leishmaniasis and raised NO production in ex vivo cultures of splenocytes and hepatocytes. The extensive oxidative stress found in oleuropein-treated mice was obviated by the upregulation of the host's antioxidant enzyme (mGCLC) and the simultaneous downregulation of the corresponding enzyme of the parasite (LdGCLC). Moreover, oleuropein was able to mount a significant Th1 polarization characterized by the expression of immune genes (IL-12β, IL-10, TGF-β1, IFN-γ) and transcription factors (Tbx21 and GATA3). Moreover, this immunomodulatory effect was also correlated with an inhibitory effect on IL-1β gene expression, rather than with the expression of IL-1α, IL-1rn and TNF-α. Furthermore, oleuropein-treated BALB/c mice mounted a delayed-type hypersensitivity (DTH) response and an elevated Leishmania-specific IgG2a/IgG1 ratio that clearly demonstrated an in vivo protective mechanism. The ability of Oleuropein to promote a Th1 type immune response in L. donovani-infected BALB/c mice points towards the candidacy of this bioactive compound as an immunomodulatory agent that may complement therapeutic approaches to leishmaniasis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 18%
Student > Master 8 14%
Researcher 7 12%
Student > Bachelor 5 9%
Professor 2 4%
Other 4 7%
Unknown 21 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 12%
Biochemistry, Genetics and Molecular Biology 7 12%
Medicine and Dentistry 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Veterinary Science and Veterinary Medicine 2 4%
Other 7 12%
Unknown 27 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2016.
All research outputs
#17,812,370
of 22,882,389 outputs
Outputs from Parasites & Vectors
#3,824
of 5,475 outputs
Outputs of similar age
#264,519
of 361,775 outputs
Outputs of similar age from Parasites & Vectors
#105
of 141 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,475 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,775 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 141 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.