↓ Skip to main content

Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle

Overview of attention for article published in BMC Systems Biology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle
Published in
BMC Systems Biology, August 2016
DOI 10.1186/s12918-016-0291-2
Pubmed ID
Authors

Anders Wallqvist, Xin Fang, Shivendra G. Tewari, Ping Ye, Jaques Reifman

Abstract

The malarial parasite Plasmodium falciparum undergoes a complex life cycle, including an intraerythrocytic developmental cycle, during which it is metabolically dependent on the infected human red blood cell (RBC). To describe whole cell metabolic activity within both P. falciparum and RBCs during the asexual reproduction phase of the intraerythrocytic developmental cycle, we developed an integrated host-parasite metabolic modeling framework driven by time-dependent gene expression data. We validated the model by reproducing the experimentally determined 1) stage-specific production of biomass components and their precursors in the parasite and 2) metabolite concentration changes in the medium of P. falciparum-infected RBC cultures. The model allowed us to explore time- and strain-dependent P. falciparum metabolism and hypothesize how host cell metabolism alters in response to malarial infection. Specifically, the metabolic analysis showed that uninfected RBCs that coexist with infected cells in the same culture decrease their production of 2,3-bisphosphoglycerate, an oxygen-carrying regulator, reducing the ability of hemoglobin in these cells to release oxygen. Furthermore, in response to parasite-induced oxidative stress, infected RBCs downgraded their glycolytic flux by using the pentose phosphate pathway and secreting ribulose-5-phosphate. This mechanism links individually observed experimental phenomena, such as glycolytic inhibition and ribulose-5-phosphate secretion, to the oxidative stress response. Although the metabolic model does not incorporate regulatory mechanisms per se, alterations in gene expression levels caused by regulatory mechanisms are manifested in the model as altered metabolic states. This provides the model the capability to capture complex multicellular host-pathogen metabolic interactions of the infected RBC culture. The system-level analysis revealed complex relationships such as how the parasite can reduce oxygen release in uninfected cells in the presence of infected RBCs as well as the role of different metabolic pathways involved in the oxidative stress response of infected RBCs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Nigeria 1 1%
Canada 1 1%
Unknown 80 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 24%
Student > Bachelor 17 21%
Student > Master 10 12%
Researcher 9 11%
Student > Postgraduate 3 4%
Other 6 7%
Unknown 17 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 23%
Agricultural and Biological Sciences 12 15%
Immunology and Microbiology 6 7%
Computer Science 5 6%
Engineering 5 6%
Other 11 13%
Unknown 24 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2016.
All research outputs
#17,812,370
of 22,882,389 outputs
Outputs from BMC Systems Biology
#770
of 1,142 outputs
Outputs of similar age
#266,805
of 364,241 outputs
Outputs of similar age from BMC Systems Biology
#18
of 31 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,142 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,241 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.