↓ Skip to main content

Thoughts about SLC16A2, TSIX and XIST gene like sites in the human genome and a potential role in cellular chromosome counting

Overview of attention for article published in Molecular Cytogenetics, August 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Thoughts about SLC16A2, TSIX and XIST gene like sites in the human genome and a potential role in cellular chromosome counting
Published in
Molecular Cytogenetics, August 2016
DOI 10.1186/s13039-016-0271-7
Pubmed ID
Authors

Martina Rinčić, Ivan Y. Iourov, Thomas Liehr

Abstract

Chromosome counting is a process in which cells determine somehow their intrinsic chromosome number(s). The best-studied cellular mechanism that involves chromosome counting is 'chromosome-kissing' and X-chromosome inactivation (XCI) mechanism. It is necessary for the well-known dosage compensation between the genders in mammals to balance the number of active X-chromosomes (Xa) with regard to diploid set of autosomes. At the onset of XCI, two X-chromosomes are coming in close proximity and pair physically by a specific segment denominated X-pairing region (Xpr) that involves the SLC16A2 gene. An Ensembl BLAST search for human and mouse SLC16A2/Slc16a2 homologues revealed, that highly similar sequences can be found at almost each chromosome in the corresponding genomes. Additionally, a BLAST search for SLC16A2/TSIX/XIST (genes responsible for XCI) reveled that "SLC16A2/TSIX/XIST like sequences" cover equally all chromosomes, too. With respect to this we provide following hypotheses. If a single genomic region containing the SLC16A2 gene on X-chromosome is responsible for maintaining "balanced" active copy numbers, it is possible that similar sequences or gene/s have the same function on other chromosomes (autosomes). SLC16A2 like sequences on autosomes could encompass evolutionary older, but functionally active key regions for chromosome counting in early embryogenesis. Also SLC16A2 like sequence on autosomes could be involved in inappropriate chromosomes pairing and, thereby be involved in aneuploidy formation during embryogenesis and cancer development. Also, "SLC16A2/TSIX/XIST gene like sequence combinations" covering the whole genome, could be important for the determination of X:autosome ratio in cells and chromosome counting. SLC16A2 and/or SLC16A2/TSIX/XIST like sequence dispersed across autosomes and X-chromosome(s) could serve as bases for a counting mechanism to determine X:autosome ratio and could potentially be a mechanism by which a cell also counts its autosomes. It could also be that such specific genomic regions have the same function for each specific autosome. As errors during the obviously existing process of chromosome counting are one if not the major origin of germline/somatic aneuploidy the here presented hypotheses should further elaborated and experimentally tested.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 6%
Unknown 16 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 18%
Professor > Associate Professor 3 18%
Student > Bachelor 2 12%
Professor 2 12%
Student > Ph. D. Student 2 12%
Other 4 24%
Unknown 1 6%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 47%
Agricultural and Biological Sciences 6 35%
Immunology and Microbiology 1 6%
Medicine and Dentistry 1 6%
Engineering 1 6%
Other 0 0%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2016.
All research outputs
#18,467,278
of 22,882,389 outputs
Outputs from Molecular Cytogenetics
#235
of 402 outputs
Outputs of similar age
#281,515
of 364,241 outputs
Outputs of similar age from Molecular Cytogenetics
#7
of 13 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 402 research outputs from this source. They receive a mean Attention Score of 2.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,241 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.