↓ Skip to main content

Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch)

Overview of attention for article published in BMC Genomics, August 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch)
Published in
BMC Genomics, August 2016
DOI 10.1186/s12864-016-2973-y
Pubmed ID
Authors

Worarad Kanjana, Tomohiro Suzuki, Kazuo Ishii, Toshinori Kozaki, Masayuki Iigo, Kenji Yamane

Abstract

Ornamental peaches cv. 'Yaguchi' (Prunus persica (L.) Batsch) can be propagated via seeds. The establishment of efficient seed treatments for early germination and seedling growth is required to shorten nursery and breeding periods. It is important, therefore, to identify potential candidate genes responsible for the effects of rinsing and chilling on seed germination. We hypothesized that longer rinsing combined with chilling of seeds can alter the genes expression in related to dormancy and then raise the germination rate in the peach. To date, most molecular studies in peaches have involved structural genomics, and few transcriptome studies of seed germination have been conducted. In this study, we investigated the function of key seed dormancy-related genes using next-generation sequencing to profile the transcriptomes involved in seed dormancy in peaches. De novo assembly and analysis of the transcriptome identified differentially expressed and unique genes present in this fruit. De novo RNA-sequencing of peach was performed using the Illumina Miseq 2000 system. Paired-end sequence from mRNAs generated high quality sequence reads (9,049,964, 10,026,362 and 10,101,918 reads) from 'Yaguchi' peach seeds before rinsed (BR) and after rinsed for 2 or 7 days with a chilling period of 4 weeks (termed 2D4W and 7D4W), respectively. The germination rate of 7D4W was significantly higher than that of 2D4W. In total, we obtained 51,366 unique sequences. Differential expression analysis identified 7752, 8469 and 506 differentially expressed genes from BR vs 2D4W, BR vs 7D4W and 2D4W vs 7D4W libraries respectively, filtered based on p-value and an adjusted false discovery rate of less than 0.05. This study identified genes associated with the rinsing and chilling process that included those associated with phytohormones, the stress response and transcription factors. 7D4W treatment downregulated genes involved in ABA synthesis, catabolism and signaling pathways, which eventually suppressed abscisic acid activity and consequently promoted germination and seedling growth. Stress response genes were also downregulated by the 7D4W treatment, suggesting that this treatment released seeds from endodormancy. Transcription factors were upregulated by the BR and 2D4W treatment, suggesting that they play important roles in maintaining seed dormancy. This work indicated that longer rinsing combined with chilling affects gene expression and germination rate, and identified potential candidate genes responsible for dormancy progression in seeds of 'Yaguchi' peach. The results could be used to develop breeding programs and will aid future functional genomic research in peaches and other fruit trees.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Malaysia 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 20%
Researcher 6 17%
Student > Doctoral Student 4 11%
Student > Master 3 9%
Student > Bachelor 1 3%
Other 3 9%
Unknown 11 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 43%
Biochemistry, Genetics and Molecular Biology 5 14%
Philosophy 1 3%
Computer Science 1 3%
Psychology 1 3%
Other 1 3%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2016.
All research outputs
#20,337,210
of 22,882,389 outputs
Outputs from BMC Genomics
#9,293
of 10,668 outputs
Outputs of similar age
#319,401
of 364,241 outputs
Outputs of similar age from BMC Genomics
#242
of 267 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,668 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,241 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 267 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.