↓ Skip to main content

Formation of the germ-disc in spider embryos by a condensation-like mechanism

Overview of attention for article published in Frontiers in Zoology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Formation of the germ-disc in spider embryos by a condensation-like mechanism
Published in
Frontiers in Zoology, August 2016
DOI 10.1186/s12983-016-0166-9
Pubmed ID
Authors

Matthias Pechmann

Abstract

Determination of the embryonic body axes is a crucial developmental process in all animals. The establishment of the embryonic axes of spiders has been best studied in the common-house-spider Parasteatoda tepidariorum. Here, anteroposterior (AP) polarity arises during germ disc formation; the centre of the germ-disc marks the future posterior pole, and the rim of the disc the future anterior pole of the spider embryo. The centre of the germ disc is also needed for the formation of the cumulus, a group of migratory cells needed to establish dorsoventral (DV) polarity. Thus, both body axes depend on proper germ disc formation and patterning. However, these processes have not been fully analysed at the cellular and molecular level. Here I present new techniques to stain the cell membranes/outlines in live and fixed spider embryos. I show that the germ-disc is formed from a regular and contiguous blastoderm and that co-ordinated cell shape changes, rather than migration of single cells, are required to drive germ-disc formation in P. tepidariorum embryos. Furthermore, I show that the rate of cell divisions within the embryonic and extra-embryonic region is not involved in the rapid establishment of the germ-disc. Finally, I show that the process of germ-disc formation is dependent on the initiation of zygotic transcription. The presented data provide new insights in to the formation of the germ-disc in spider embryos. The establishment of the germ-disc in Parasteatoda embryos is a highly dynamic process that involves wide scale cell-shape changes. While most of the blastodermal cells become cuboidal to form the dense germ-disc, the remaining blastodermal cells stay squamous and develop into huge extra-embryonic, yolk rich cells. In addition, this study shows that the onset of zygotic transcription is needed to establish the germ-disc itself, and that the mid-blastula transition of Parasteatoda tepidariorum embryos is prior to any overt axis establishment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 6%
Unknown 17 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 33%
Student > Ph. D. Student 4 22%
Student > Master 3 17%
Student > Doctoral Student 1 6%
Lecturer 1 6%
Other 0 0%
Unknown 3 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 50%
Biochemistry, Genetics and Molecular Biology 4 22%
Unknown 5 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2017.
All research outputs
#14,206,320
of 22,882,389 outputs
Outputs from Frontiers in Zoology
#474
of 652 outputs
Outputs of similar age
#205,618
of 355,869 outputs
Outputs of similar age from Frontiers in Zoology
#13
of 15 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 652 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.0. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,869 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.