↓ Skip to main content

Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths

Overview of attention for article published in Parasites & Vectors, May 2021
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
95 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths
Published in
Parasites & Vectors, May 2021
DOI 10.1186/s13071-021-04737-y
Pubmed ID
Authors

Abigail Hui En Chan, Kittipong Chaisiri, Sompob Saralamba, Serge Morand, Urusa Thaenkham

Abstract

Genetic markers are employed widely in molecular studies, and their utility depends on the degree of sequence variation, which dictates the type of application for which they are suited. Consequently, the suitability of a genetic marker for any specific application is complicated by its properties and usage across studies. To provide a yardstick for future users, in this study we assess the suitability of genetic markers for molecular systematics and species identification in helminths and provide an estimate of the cut-off genetic distances per taxonomic level. We assessed four classes of genetic markers, namely nuclear ribosomal internal transcribed spacers, nuclear rRNA, mitochondrial rRNA and mitochondrial protein-coding genes, based on certain properties that are important for species identification and molecular systematics. For molecular identification, these properties are inter-species sequence variation; length of reference sequences; easy alignment of sequences; and easy to design universal primers. For molecular systematics, the properties are: average genetic distance from order/suborder to species level; the number of monophyletic clades at the order/suborder level; length of reference sequences; easy alignment of sequences; easy to design universal primers; and absence of nucleotide substitution saturation. Estimation of the cut-off genetic distances was performed using the 'K-means' clustering algorithm. The nuclear rRNA genes exhibited the lowest sequence variation, whereas the mitochondrial genes exhibited relatively higher variation across the three groups of helminths. Also, the nuclear and mitochondrial rRNA genes were the best possible genetic markers for helminth molecular systematics, whereas the mitochondrial protein-coding and rRNA genes were suitable for molecular identification. We also revealed that a general gauge of genetic distances might not be adequate, using evidence from the wide range of genetic distances among nematodes. This study assessed the suitability of DNA genetic markers for application in molecular systematics and molecular identification of helminths. We provide a novel way of analyzing genetic distances to generate suitable cut-off values for each taxonomic level using the 'K-means' clustering algorithm. The estimated cut-off genetic distance values, together with the summary of the utility and limitations of each class of genetic markers, are useful information that can benefit researchers conducting molecular studies on helminths.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 95 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 95 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 14 15%
Researcher 11 12%
Student > Master 11 12%
Student > Ph. D. Student 5 5%
Student > Postgraduate 4 4%
Other 11 12%
Unknown 39 41%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 16%
Biochemistry, Genetics and Molecular Biology 14 15%
Environmental Science 8 8%
Veterinary Science and Veterinary Medicine 7 7%
Immunology and Microbiology 4 4%
Other 7 7%
Unknown 40 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 May 2021.
All research outputs
#15,685,238
of 23,308,124 outputs
Outputs from Parasites & Vectors
#3,451
of 5,549 outputs
Outputs of similar age
#260,065
of 438,160 outputs
Outputs of similar age from Parasites & Vectors
#84
of 145 outputs
Altmetric has tracked 23,308,124 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,549 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,160 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 145 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.