↓ Skip to main content

Mycobacterium tuberculosis H37Ra: a surrogate for the expression of conserved, multimeric proteins of M.tb H37Rv

Overview of attention for article published in Microbial Cell Factories, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mycobacterium tuberculosis H37Ra: a surrogate for the expression of conserved, multimeric proteins of M.tb H37Rv
Published in
Microbial Cell Factories, August 2016
DOI 10.1186/s12934-016-0537-0
Pubmed ID
Authors

Vishant Mahendra Boradia, Pravinkumar Patil, Anushri Agnihotri, Ajay Kumar, Kalpesh Kumar Rajwadi, Ankit Sahu, Naveen Bhagath, Navdeep Sheokand, Manoj Kumar, Himanshu Malhotra, Rachita Patkar, Navi Hasan, Manoj Raje, Chaaya Iyengar Raje

Abstract

Obtaining sufficient quantities of recombinant M.tb proteins using traditional approaches is often unsuccessful. Several enzymes of the glycolytic cycle are known to be multifunctional, however relatively few enzymes from M.tb H37Rv have been characterized in the context of their enzymatic and pleiotropic roles. One of the primary reasons is the difficulty in obtaining sufficient amounts of functionally active protein. In the current study, using M.tb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) we demonstrate that expression in E. coli or M. smegmatis results in insolubility and improper subcellular localization. In addition, expression of such conserved multisubunit proteins poses the problem of heteromerization with host homologues. Importantly the expression host dramatically affected the yield and functionality of GAPDH in terms of both enzymatic activity and moonlighting function (transferrin binding). The applicability of this system was further confirmed using two additional enzymes i.e. M.tb Pyruvate kinase and Enolase. Our studies establish that the attenuated strain M.tb H37Ra is a suitable host for the expression of highly hydrophobic, conserved, multimeric proteins of M.tb H37Rv. Significantly, this expression host overcomes the limitations of E. coli and M. smegmatis expression and yields recombinant protein that is qualitatively superior to that obtained by traditional methods. The current study highlights the fact that protein functionality (which is an an essential requirement for all in vitro assays and drug development) may be altered by the choice of expression host.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 13%
Student > Bachelor 4 13%
Student > Ph. D. Student 4 13%
Student > Doctoral Student 2 6%
Professor > Associate Professor 2 6%
Other 5 16%
Unknown 11 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 31%
Immunology and Microbiology 3 9%
Agricultural and Biological Sciences 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Chemical Engineering 1 3%
Other 2 6%
Unknown 12 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2016.
All research outputs
#15,329,969
of 22,882,389 outputs
Outputs from Microbial Cell Factories
#985
of 1,603 outputs
Outputs of similar age
#227,785
of 355,869 outputs
Outputs of similar age from Microbial Cell Factories
#19
of 35 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,603 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,869 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.