↓ Skip to main content

Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition

Overview of attention for article published in BMC Genomics, August 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition
Published in
BMC Genomics, August 2016
DOI 10.1186/s12864-016-2949-y
Pubmed ID
Authors

Haoxin Li, Andrew Cowie, John A. Johnson, Duncan Webster, Christopher J. Martyniuk, Christopher A. Gray

Abstract

The treatment of microbial infections is becoming increasingly challenging because of limited therapeutic options and the growing number of pathogenic strains that are resistant to current antibiotics. There is an urgent need to identify molecules with novel modes of action to facilitate the development of new and more effective therapeutic agents. The anti-mycobacterial activity of the C17 diyne natural products falcarinol and panaxydol has been described previously; however, their mode of action remains largely undetermined in microbes. Gene expression profiling was therefore used to determine the transcriptomic response of Mycobacterium smegmatis upon treatment with falcarinol and panaxydol to better characterize the mode of action of these C17 diynes. Our analyses identified 704 and 907 transcripts that were differentially expressed in M. smegmatis after treatment with falcarinol and panaxydol respectively. Principal component analysis suggested that the C17 diynes exhibit a mode of action that is distinct to commonly used antimycobacterial drugs. Functional enrichment analysis and pathway enrichment analysis revealed that cell processes such as ectoine biosynthesis and cyclopropane-fatty-acyl-phospholipid synthesis were responsive to falcarinol and panaxydol treatment at the transcriptome level in M. smegmatis. The modes of action of the two C17 diynes were also predicted through Prediction of Activity Spectra of Substances (PASS). Based upon convergence of these three independent analyses, we hypothesize that the C17 diynes inhibit fatty acid biosynthesis, specifically phospholipid synthesis, in mycobacteria. Based on transcriptomic responses, it is suggested that the C17 diynes act differently than other anti-mycobacterial compounds in M. smegmatis, and do so by inhibiting phospholipid biosynthesis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 5%
Unknown 18 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 21%
Researcher 4 21%
Student > Master 3 16%
Professor 1 5%
Other 1 5%
Other 1 5%
Unknown 5 26%
Readers by discipline Count As %
Medicine and Dentistry 4 21%
Biochemistry, Genetics and Molecular Biology 3 16%
Agricultural and Biological Sciences 2 11%
Computer Science 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 2 11%
Unknown 6 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 August 2016.
All research outputs
#15,381,002
of 22,882,389 outputs
Outputs from BMC Genomics
#6,701
of 10,668 outputs
Outputs of similar age
#228,583
of 355,869 outputs
Outputs of similar age from BMC Genomics
#176
of 265 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,668 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,869 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 265 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.