↓ Skip to main content

Investigating the potential role of non-vls genes on linear plasmid 28–1 in virulence and persistence by Borrelia burgdorferi

Overview of attention for article published in BMC Microbiology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Investigating the potential role of non-vls genes on linear plasmid 28–1 in virulence and persistence by Borrelia burgdorferi
Published in
BMC Microbiology, August 2016
DOI 10.1186/s12866-016-0806-4
Pubmed ID
Authors

Petronella R. Hove Magunda, Troy Bankhead

Abstract

The lp28-1 plasmid is required for persistent infection by the Lyme disease spirochete, Borrelia burgdorferi. Mutational studies on this plasmid have shown that the vls locus is important for antigenic variation of the VlsE lipoprotein that leads to immune evasion and persistence. However, it is still unknown whether the vls system is the only genetic locus on this plasmid necessary for long-term infection, and thus the potential role of non-vls genes on lp28-1 in virulence and persistence is yet to be fully determined. Despite extensive mutational analyses, two lp28-1 regions containing the ORFs bbf19 - bbf22 and bbf27 - bbf30 have not yet been mutated in their entirety. In this study, we set out to establish if these unstudied regions of lp28-1 play a role in spirochete persistence. Results show that the generated mutants were fully infectious in immunocompetent mice, and were able to persist for 91 days following infection. Following this finding, ospC expression by these mutants was determined, as it has been reported that spirochetes lacking lp28-1 fail to downregulate expression of this lipoprotein leading to immune clearance. Data presented here failed to show a definitive difference in ospC expression levels during host infection when the mutants were compared to the wild type. Overall, the results strongly suggest that non-vls genes residing on lp28-1 do not play a role in spirochete persistence during infection of the mammalian host, and that the regions under study are likely not involved in the regulation of ospC expression. In conjunction with previous studies involving mutation of non-vls loci on lp28-1, these findings suggest that the vls locus is likely the sole genetic element on this plasmid responsible for immune evasion and persistence exhibited by the Lyme disease pathogen.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Librarian 2 13%
Other 2 13%
Student > Doctoral Student 1 7%
Professor 1 7%
Other 1 7%
Unknown 4 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 13%
Immunology and Microbiology 2 13%
Chemistry 2 13%
Philosophy 1 7%
Agricultural and Biological Sciences 1 7%
Other 3 20%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2021.
All research outputs
#13,986,547
of 22,883,326 outputs
Outputs from BMC Microbiology
#1,359
of 3,195 outputs
Outputs of similar age
#208,061
of 364,244 outputs
Outputs of similar age from BMC Microbiology
#35
of 94 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,195 research outputs from this source. They receive a mean Attention Score of 4.1. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,244 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.