↓ Skip to main content

Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR

Overview of attention for article published in BMC Genomic Data, August 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
1 X user
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR
Published in
BMC Genomic Data, August 2016
DOI 10.1186/s12863-016-0426-x
Pubmed ID
Authors

Amel Oueslati, Frederique Ollitrault, Ghada Baraket, Amel Salhi-Hannachi, Luis Navarro, Patrick Ollitrault

Abstract

Chloroplast DNA is a primary source of molecular variations for phylogenetic analysis of photosynthetic eukaryotes. However, the sequencing and analysis of multiple chloroplastic regions is difficult to apply to large collections or large samples of natural populations. The objective of our work was to demonstrate that a molecular taxonomic key based on easy, scalable and low-cost genotyping method should be developed from a set of Single Nucleotide Polymorphisms (SNPs) diagnostic of well-established clades. It was applied to the Aurantioideae subfamily, the largest group of the Rutaceae family that includes the cultivated citrus species. The publicly available nucleotide sequences of eight plastid genomic regions were compared for 79 accessions of the Aurantioideae subfamily to search for SNPs revealing taxonomic differentiation at the inter-tribe, inter-subtribe, inter-genus and interspecific levels. Diagnostic SNPs (DSNPs) were found for 46 of the 54 clade levels analysed. Forty DSNPs were selected to develop KASPar markers and their taxonomic value was tested by genotyping 108 accessions of the Aurantioideae subfamily. Twenty-seven markers diagnostic of 24 clades were validated and they displayed a very high rate of transferability in the Aurantioideae subfamily (only 1.2 % of missing data on average). The UPGMA from the validated markers produced a cladistic organisation that was highly coherent with the previous phylogenetic analysis based on the sequence data of the eight plasmid regions. In particular, the monophyletic origin of the "true citrus" genera plus Oxanthera was validated. However, some clarification remains necessary regarding the organisation of the other wild species of the Citreae tribe. We validated the concept that with well-established clades, DSNPs can be selected and efficiently transformed into competitive allele-specific PCR markers (KASPar method) allowing cost-effective highly efficient cladistic analysis in large collections at subfamily level. The robustness of this genotyping method is an additional decisive advantage for network collaborative research. The availability of WGS data for the main "true citrus" species should soon make it possible to develop a set of DSNP markers allowing very fine resolution of this very important horticultural group.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 19%
Student > Bachelor 3 12%
Professor 3 12%
Student > Ph. D. Student 3 12%
Researcher 2 8%
Other 1 4%
Unknown 9 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 31%
Biochemistry, Genetics and Molecular Biology 3 12%
Medicine and Dentistry 2 8%
Computer Science 1 4%
Nursing and Health Professions 1 4%
Other 2 8%
Unknown 9 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 May 2023.
All research outputs
#7,356,343
of 25,374,647 outputs
Outputs from BMC Genomic Data
#252
of 1,204 outputs
Outputs of similar age
#108,522
of 354,575 outputs
Outputs of similar age from BMC Genomic Data
#7
of 32 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,575 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.