↓ Skip to main content

Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
181 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters
Published in
Journal of NeuroEngineering and Rehabilitation, August 2016
DOI 10.1186/s12984-016-0174-1
Pubmed ID
Authors

Adrián Borrego, Jorge Latorre, Roberto Llorens, Mariano Alcañiz, Enrique Noé

Abstract

Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 ± 0.3 vs 14.6 ± 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 ± 2.0 vs 93.5 ± 3.2 over 147, respectively). The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 181 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 181 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 32 18%
Student > Bachelor 27 15%
Student > Ph. D. Student 25 14%
Researcher 18 10%
Student > Doctoral Student 9 5%
Other 18 10%
Unknown 52 29%
Readers by discipline Count As %
Engineering 24 13%
Psychology 19 10%
Nursing and Health Professions 17 9%
Computer Science 14 8%
Medicine and Dentistry 14 8%
Other 34 19%
Unknown 59 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2016.
All research outputs
#15,983,785
of 25,374,917 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#807
of 1,413 outputs
Outputs of similar age
#225,512
of 376,071 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#13
of 20 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,413 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 376,071 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.