↓ Skip to main content

Simvastatin up-regulates adenosine deaminase and suppresses osteopontin expression in COPD patients through an IL-13-dependent mechanism

Overview of attention for article published in Respiratory Research, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Simvastatin up-regulates adenosine deaminase and suppresses osteopontin expression in COPD patients through an IL-13-dependent mechanism
Published in
Respiratory Research, August 2016
DOI 10.1186/s12931-016-0424-6
Pubmed ID
Authors

Kittipong Maneechotesuwan, Kanda Kasetsinsombat, Adisak Wongkajornsilp, Peter J. Barnes

Abstract

Adenosine deaminase (ADA) and osteopontin (OPN) may play opposing roles in the pathogenesis of COPD. Deficiency of ADA results in enhanced adenosine signaling which up-regulates OPN expression. Although statins suppress OPN in cancer cells, little is known about their effects on ADA and OPN in COPD patients. We extended a previous randomized double-blind placebo crossover study to investigate the effects of simvastatin (20 mg/day) on sputum ADA and OPN expression and explored the underlying signaling pathways involved by conducting in vitro experiments with cigarette smoke extract (CSE)-treated monocyte-derived macrophages (MDM) from COPD patients and healthy subjects. Simvastatin decreased sputum IL-13, OPN and CD73, while increasing ADA expression, irrespective of inhaled corticosteroid treatment and smoking status in parallel to increased inosine levels. The degree of simvastatin-restored ADA activity was significantly correlated with the magnitude of changes in pre-bronchodilator FEV1. Mechanistic exploration showed that CSE enhanced the expression of IL-13, which induced an increase in OPN and inhibited ADA mRNA accumulation in MDM from COPD patients but not healthy subjects through a STAT6-dependent mechanism. Simvastatin treatment inhibited IL-13 transcription in a dose-dependent manner, and therefore diminished the IL-13-induced increase in OPN and restored IL-13-suppressed ADA. There was no effect of simvastatin on adenosine receptors in CSE-stimulated MDM, indicating that its effects were on the adenosine pathway. Simvastatin reversed IL-13-suppressed ADA activity that leads to the down-regulation of adenosine signaling and therefore inhibits OPN expression through the direct inhibition of IL-13-activated STAT6 pathway. Inhibition of IL-13 may reverse the imbalance between ADA and OPN in COPD and therefore may prevent COPD progression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 16%
Student > Bachelor 8 14%
Student > Master 5 9%
Other 4 7%
Student > Ph. D. Student 4 7%
Other 10 18%
Unknown 17 30%
Readers by discipline Count As %
Medicine and Dentistry 14 25%
Biochemistry, Genetics and Molecular Biology 9 16%
Nursing and Health Professions 3 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Agricultural and Biological Sciences 2 4%
Other 8 14%
Unknown 19 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 December 2017.
All research outputs
#16,722,190
of 25,374,917 outputs
Outputs from Respiratory Research
#2,055
of 3,062 outputs
Outputs of similar age
#220,957
of 352,663 outputs
Outputs of similar age from Respiratory Research
#39
of 50 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,663 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.