↓ Skip to main content

Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET

Overview of attention for article published in Journal of Neuroinflammation, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

news
1 news outlet
facebook
1 Facebook page

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET
Published in
Journal of Neuroinflammation, August 2016
DOI 10.1186/s12974-016-0700-x
Pubmed ID
Authors

Anna M. Barron, Masaki Tokunaga, Ming-Rong Zhang, Bin Ji, Tetsuya Suhara, Makoto Higuchi

Abstract

Obesity has been identified as a risk factor for cognitive decline and Alzheimer's disease (AD). The aim of this study was to investigate the effect of obesity on neuroinflammation and cerebral glucose metabolism using PET in a mouse model of β-amyloidosis and determine the relationship between these PET imaging biomarkers, pathogenic changes, and functional outcomes. Three-month-old C57BL/J6 mice were fed either a standard (control group) or high-fat diet (obese group) for 3 months and intracerebroventricularly infused with vehicle or human beta amyloid 1-42 (Aβ42). We assessed obesity-induced abnormalities in peripheral metabolic indices including adiposity, fasting glucose, and glucose tolerance. Brain glucose metabolism was assessed by (18)F-FDG PET, and glial activation was assessed using the translocator protein (TSPO) ligand (11)C-PBR-28. TSPO expression was confirmed by immunohistochemistry of brain sections obtained from scanned mice. The association between inflammatory state and (11)C-PBR-28 PET signals was characterized by examination of the cytokine expression profile in both the serum and hippocampus by antibody array. Learning and memory performance was assessed in the object recognition task, and anxiety-related behavior was assessed in the elevated plus maze. Obesity combined with Aβ infusion promoted neuroinflammation and cerebral hypermetabolism, and these signals were significant predictors of learning and memory performance in the object recognition task. In vivo TSPO signals were associated with inflammatory markers including CXCL1, CXCL2, CXCL12, CCL3, CCL5, TIMP-1, G-CSF, sICAM-1, and IL-1ra. In vivo cerebral metabolism and TSPO signals indicate that obesity can accelerate amyloid-induced inflammation and associated cognitive decline.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 88 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 19%
Researcher 13 15%
Student > Bachelor 8 9%
Student > Master 7 8%
Student > Doctoral Student 6 7%
Other 15 17%
Unknown 22 25%
Readers by discipline Count As %
Neuroscience 20 23%
Medicine and Dentistry 15 17%
Psychology 8 9%
Biochemistry, Genetics and Molecular Biology 4 5%
Nursing and Health Professions 3 3%
Other 11 13%
Unknown 27 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2016.
All research outputs
#4,123,440
of 22,884,315 outputs
Outputs from Journal of Neuroinflammation
#791
of 2,644 outputs
Outputs of similar age
#70,169
of 337,459 outputs
Outputs of similar age from Journal of Neuroinflammation
#14
of 52 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,644 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,459 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.