↓ Skip to main content

Mutation spectrum of Drosophila CNVs revealed by breakpoint sequencing

Overview of attention for article published in Genome Biology, December 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
38 Mendeley
citeulike
4 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mutation spectrum of Drosophila CNVs revealed by breakpoint sequencing
Published in
Genome Biology, December 2012
DOI 10.1186/gb-2012-13-12-r119
Pubmed ID
Authors

Margarida Cardoso-Moreira, J Roman Arguello, Andrew G Clark

Abstract

BACKGROUND: The detailed study of breakpoints associated with copy number variants (CNVs) can elucidate the mutational mechanisms that generate them and the comparison of breakpoints across species can highlight differences in genomic architecture that may lead to lineage-specific differences in patterns of CNVs. Here, we provide a detailed analysis of Drosophila CNV breakpoints and contrast it with similar analyses recently carried out for the human genome. RESULTS: By applying split-read methods to a total of 10x coverage of 454 shotgun sequence across nine lines of D. melanogaster and by re-examining a previously published dataset of CNVs detected using tiling arrays, we identified the precise breakpoints of more than 600 insertions, deletions, and duplications. Contrasting these CNVs with those found in humans showed that in both taxa CNV breakpoints fall into three classes: blunt breakpoints; simple breakpoints associated with microhomology; and breakpoints with additional nucleotides inserted/deleted and no microhomology. In both taxa CNV breakpoints are enriched with non-B DNA sequence structures, which may impair DNA replication and/or repair. However, in contrast to human genomes, non-allelic homologous-recombination (NAHR) plays a negligible role in CNV formation in Drosophila. In flies, non-homologous repair mechanisms are responsible for simple, recurrent, and complex CNVs, including insertions of de novo sequence as large as 60 bp. CONCLUSIONS: Humans and Drosophila differ considerably in the importance of homology-based mechanisms for the formation of CNVs, likely as a consequence of the differences in the abundance and distribution of both segmental duplications and transposable elements between the two genomes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 8%
Sweden 2 5%
Canada 1 3%
Unknown 32 84%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 26%
Researcher 10 26%
Student > Master 5 13%
Professor 3 8%
Student > Doctoral Student 2 5%
Other 3 8%
Unknown 5 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 58%
Biochemistry, Genetics and Molecular Biology 4 11%
Computer Science 2 5%
Philosophy 1 3%
Immunology and Microbiology 1 3%
Other 1 3%
Unknown 7 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 December 2012.
All research outputs
#17,235,658
of 25,373,627 outputs
Outputs from Genome Biology
#4,090
of 4,467 outputs
Outputs of similar age
#193,139
of 288,972 outputs
Outputs of similar age from Genome Biology
#46
of 50 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 31st percentile – i.e., 31% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,467 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,972 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.