↓ Skip to main content

LsrR, the effector of AI-2 quorum sensing, is vital for the H2O2 stress response in mammary pathogenic Escherichia coli

Overview of attention for article published in Veterinary Research, October 2021
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
LsrR, the effector of AI-2 quorum sensing, is vital for the H2O2 stress response in mammary pathogenic Escherichia coli
Published in
Veterinary Research, October 2021
DOI 10.1186/s13567-021-00998-8
Pubmed ID
Authors

Hui Wang, Fei Shang, Jiawei Shen, Jingyi Xu, Xiaolin Chen, Jingtian Ni, Lumin Yu, Ting Xue

Abstract

Mammary pathogenic Escherichia coli (MPEC) is an important causative agent of mastitis in dairy cows that results in reduced milk quality and production, and is responsible for severe economic losses in the dairy industry worldwide. Oxidative stress, as an imbalance between reactive oxygen species (ROS) and antioxidants, is a stress factor that is common in most bacterial habitats. The presence of ROS can damage cellular sites, including iron-sulfur clusters, cysteine and methionine protein residues, and DNA, and may cause bacterial cell death. Previous studies have reported that Autoinducer 2 (AI-2) can regulate E. coli antibiotic resistance and pathogenicity by mediating the intracellular receptor protein LsrR. This study explored the regulatory mechanism of LsrR on the H2O2 stress response in MPEC, showing that the transcript levels of lsrR significantly decreased under H2O2 stress conditions. The survival cell count of lsrR mutant XW10/pSTV28 was increased about 3080-fold when compared with that of the wild-type WT/pSTV28 in the presence of H2O2 and overexpression of lsrR (XW10/pUClsrR) resulted in a decrease in bacterial survival rates under these conditions. The β-galactosidase reporter assays showed that mutation of lsrR led to a remarkable increase in expression of the promoters of ahpCF, katG and oxyR, while lsrR-overexpressing significantly reduced the expression of ahpCF and katG. The electrophoretic mobility shift assays confirmed that LsrR could directly bind to the promoter regions of ahpCF and katG. These results revealed the important role played by LsrR in the oxidative stress response of MPEC.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 2 13%
Student > Postgraduate 2 13%
Researcher 2 13%
Unspecified 1 6%
Student > Ph. D. Student 1 6%
Other 0 0%
Unknown 8 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 31%
Unspecified 1 6%
Immunology and Microbiology 1 6%
Unknown 9 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2021.
All research outputs
#22,774,430
of 25,392,582 outputs
Outputs from Veterinary Research
#1,199
of 1,338 outputs
Outputs of similar age
#374,828
of 436,513 outputs
Outputs of similar age from Veterinary Research
#16
of 18 outputs
Altmetric has tracked 25,392,582 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,338 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 436,513 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.