↓ Skip to main content

Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field

Overview of attention for article published in Cellular & Molecular Biology Letters, December 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field
Published in
Cellular & Molecular Biology Letters, December 2012
DOI 10.2478/s11658-012-0042-3
Pubmed ID
Authors

Włodzimierz Korohoda, Maciej Grys, Zbigniew Madeja

Abstract

Experiments on reversible and irreversible cell electroporation were carried out with an experimental setup based on a standard apparatus for horizontal electrophoresis, a syringe pump with regulated cell suspension flow velocity and a dcEF power supply. Cells in suspension flowing through an orifice in a barrier inserted into the electrophoresis apparatus were exposed to defined localized dcEFs in the range of 0-1000 V/cm for a selected duration in the range 10-1000 ms. This method permitted the determination of the viability of irreversibly electroperforated cells. It also showed that the uptake by reversibly electroperforated cells of fluorescent dyes (calcein, carboxyfluorescein, Alexa Fluor 488 Phalloidin), which otherwise do not penetrate cell membranes, was dependent upon the dcEF strength and duration in any given single electrical field exposure. The method yields reproducible results, makes it easy to load large volumes of cell suspensions with membrane non-penetrating substances, and permits the elimination of irreversibly electroporated cells of diameter greater than desired. The results concur with and elaborate on those in earlier reports on cell electroporation in commercially available electroporators. They proved once more that the observed cell perforation does not depend upon the thermal effects of the electric current upon cells. In addition, the method eliminates many of the limitations of commercial electroporators and disposable electroporation chambers. It permits the optimization of conditions in which reversible and irreversible electroporation are separated. Over 90% of reversibly electroporated cells remain viable after one short (less than 400 ms) exposure to the localized dcEF. Experiments were conducted with the AT-2 cancer prostate cell line, human skin fibroblasts and human red blood cells, but they could be run with suspensions of any cell type. It is postulated that the described method could be useful for many purposes in biotechnology and biomedicine and could help optimize conditions for in vivo use of both reversible and irreversible electroporation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 55 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 25%
Student > Bachelor 11 20%
Student > Master 10 18%
Researcher 7 13%
Student > Doctoral Student 2 4%
Other 4 7%
Unknown 8 14%
Readers by discipline Count As %
Engineering 16 29%
Agricultural and Biological Sciences 8 14%
Biochemistry, Genetics and Molecular Biology 8 14%
Medicine and Dentistry 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 6 11%
Unknown 11 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 January 2013.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from Cellular & Molecular Biology Letters
#304
of 606 outputs
Outputs of similar age
#228,812
of 288,792 outputs
Outputs of similar age from Cellular & Molecular Biology Letters
#1
of 3 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 606 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,792 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them