↓ Skip to main content

The Arabidopsis phytohormone crosstalk network involves a consecutive metabolic route and circular control units of transcription factors that regulate enzyme-encoding genes

Overview of attention for article published in BMC Systems Biology, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Arabidopsis phytohormone crosstalk network involves a consecutive metabolic route and circular control units of transcription factors that regulate enzyme-encoding genes
Published in
BMC Systems Biology, September 2016
DOI 10.1186/s12918-016-0333-9
Pubmed ID
Authors

Xun Yue, Xing Guo Li, Xin-Qi Gao, Xiang Yu Zhao, Yu Xiu Dong, Chao Zhou

Abstract

Phytohormone synergies and signaling interdependency are important topics in plant developmental biology. Physiological and genetic experimental evidence for phytohormone crosstalk has been accumulating and a genome-scale enzyme correlation model representing the Arabidopsis metabolic pathway has been published. However, an integrated molecular characterization of phytohormone crosstalk is still not available. A novel modeling methodology and advanced computational approaches were used to construct an enzyme-based Arabidopsis phytohormone crosstalk network (EAPCN) at the biosynthesis level. The EAPCN provided the structural connectivity architecture of phytohormone biosynthesis pathways and revealed a surprising result; that enzymes localized at the highly connected nodes formed a consecutive metabolic route. Furthermore, our analysis revealed that the transcription factors (TFs) that regulate enzyme-encoding genes in the consecutive metabolic route formed structures, which we describe as circular control units operating at the transcriptional level. Furthermore, the downstream TFs in phytohormone signal transduction pathways were found to be involved in the circular control units that included the TFs regulating enzyme-encoding genes. In addition, multiple functional enzymes in the EAPCN were found to be involved in ion and pH homeostasis, environmental signal perception, cellular redox homeostasis, and circadian clocks. Last, publicly available transcriptional profiles and a protein expression map of the Arabidopsis root apical meristem were used as a case study to validate the proposed framework. Our results revealed multiple scales of coupled mechanisms in that hormonal crosstalk networks that play a central role in coordinating internal developmental processes with environmental signals, and give a broader view of Arabidopsis phytohormone crosstalk. We also uncovered potential key regulators that can be further analyzed in future studies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 29%
Student > Ph. D. Student 6 16%
Student > Master 3 8%
Student > Doctoral Student 2 5%
Student > Bachelor 2 5%
Other 6 16%
Unknown 8 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 58%
Biochemistry, Genetics and Molecular Biology 5 13%
Computer Science 1 3%
Engineering 1 3%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 September 2016.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from BMC Systems Biology
#1,004
of 1,132 outputs
Outputs of similar age
#308,117
of 347,912 outputs
Outputs of similar age from BMC Systems Biology
#30
of 36 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,132 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,912 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.