↓ Skip to main content

Assessment of genetically engineered Trabulsiella odontotermitis as a ‘Trojan Horse’ for paratransgenesis in termites

Overview of attention for article published in BMC Microbiology, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessment of genetically engineered Trabulsiella odontotermitis as a ‘Trojan Horse’ for paratransgenesis in termites
Published in
BMC Microbiology, September 2016
DOI 10.1186/s12866-016-0822-4
Pubmed ID
Authors

Chinmay Vijay Tikhe, Thomas M. Martin, Andréa Howells, Jennifer Delatte, Claudia Husseneder

Abstract

The Formosan subterranean termite, Coptotermes formosanus is an invasive urban pest in the Southeastern USA. Paratransgenesis using a microbe expressed lytic peptide that targets the termite gut protozoa is currently being developed for the control of Formosan subterranean termites. In this study, we evaluated Trabulsiella odontotermitis, a termite-specific bacterium, for its potential to serve as a 'Trojan Horse' for expression of gene products in termite colonies. We engineered two strains of T. odontotermitis, one transformed with a constitutively expressed GFP plasmid and the other engineered at the chromosome with a Kanamycin resistant gene using a non- disruptive Tn7 transposon. Both strains were fed to termites from three different colonies. Fluorescent microscopy confirmed that T. odontotermitis expressed GFP in the gut and formed a biofilm in the termite hindgut. However, GFP producing bacteria could not be isolated from the termite gut after 2 weeks. The feeding experiment with the chromosomally engineered strain demonstrated that T. odontotermitis was maintained in the termite gut for at least 21 days, irrespective of the termite colony. The bacteria persisted in two termite colonies for at least 36 days post feeding. The experiment also confirmed the horizontal transfer of T. odontotermitis amongst nest mates. Overall, we conclude that T. odontotermitis can serve as a 'Trojan Horse' for spreading gene products in termite colonies. This study provided proof of concept and laid the foundation for the future development of genetically engineered termite gut bacteria for paratransgenesis based termite control.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Researcher 4 13%
Student > Doctoral Student 2 7%
Student > Bachelor 2 7%
Professor 2 7%
Other 3 10%
Unknown 10 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 47%
Biochemistry, Genetics and Molecular Biology 3 10%
Veterinary Science and Veterinary Medicine 1 3%
Social Sciences 1 3%
Chemistry 1 3%
Other 0 0%
Unknown 10 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2017.
All research outputs
#15,557,505
of 23,881,329 outputs
Outputs from BMC Microbiology
#1,652
of 3,286 outputs
Outputs of similar age
#208,875
of 339,095 outputs
Outputs of similar age from BMC Microbiology
#37
of 79 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,286 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,095 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.