↓ Skip to main content

Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis

Overview of attention for article published in Microbial Cell Factories, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis
Published in
Microbial Cell Factories, September 2016
DOI 10.1186/s12934-016-0551-2
Pubmed ID
Authors

Giuliana Donadio, Mariamichela Lanzilli, Teja Sirec, Ezio Ricca, Rachele Isticato

Abstract

Bacterial spores have been proposed as vehicles to display heterologous proteins for the development of mucosal vaccines, biocatalysts, bioremediation and diagnostic tools. Two approaches have been developed to display proteins on the spore surface: a recombinant approach, based on the construction of gene fusions between DNA molecules coding for a spore surface protein (carrier) and for the heterologous protein to be displayed (passenger); and a non-recombinant approach based on spore adsorption, a spontaneous interaction between negatively charged, hydrophobic spores and purified proteins. The molecular details of spore adsorption have not been fully clarified yet. We used the monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp. and Bacillus subtilis spores of a wild type and an isogenic mutant strain lacking the CotH protein to clarify the adsorption process. Mutant spores, characterized by a strongly altered coat, were more efficient than wild type spores in adsorbing mRFP but the interaction was less stable and mRFP could be in part released by raising the pH of the spore suspension. A collection of isogenic strains carrying GFP fused to proteins restricted in different compartments of the B. subtilis spore was used to localize adsorbed mRFP molecules. In wild type spores mRFP infiltrated through crust and outer coat, localized in the inner coat and was not surface exposed. In mutant spores mRFP was present in all surface layers, inner, outer coat and crust and was exposed on the spore surface. Our results indicate that different spores can be selected for different applications. Wild type spores are preferable when a very tight protein-spore interaction is needed, for example to develop reusable biocatalysts or bioremediation systems for field applications. cotH mutant spores are instead preferable when the heterologous protein has to be displayed on the spore surface or has to be released, as could be the case in mucosal delivery systems for antigens and drugs, respectively.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 24%
Student > Master 5 17%
Professor 2 7%
Student > Ph. D. Student 2 7%
Student > Bachelor 2 7%
Other 1 3%
Unknown 10 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 28%
Biochemistry, Genetics and Molecular Biology 5 17%
Linguistics 1 3%
Chemical Engineering 1 3%
Nursing and Health Professions 1 3%
Other 1 3%
Unknown 12 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2016.
All research outputs
#20,340,423
of 22,886,568 outputs
Outputs from Microbial Cell Factories
#1,367
of 1,604 outputs
Outputs of similar age
#289,782
of 332,538 outputs
Outputs of similar age from Microbial Cell Factories
#28
of 39 outputs
Altmetric has tracked 22,886,568 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,604 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,538 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.