↓ Skip to main content

Genomic prediction of survival time in a population of brown laying hens showing cannibalistic behavior

Overview of attention for article published in Genetics Selection Evolution, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic prediction of survival time in a population of brown laying hens showing cannibalistic behavior
Published in
Genetics Selection Evolution, September 2016
DOI 10.1186/s12711-016-0247-4
Pubmed ID
Authors

Setegn W. Alemu, Mario P. L. Calus, William M. Muir, Katrijn Peeters, Addie Vereijken, Piter Bijma

Abstract

Mortality due to cannibalism causes both economic and welfare problems in laying hens. To limit mortality due to cannibalism, laying hens are often beak-trimmed, which is undesirable for animal welfare reasons. Genetic selection is an alternative strategy to increase survival and is more efficient by taking heritable variation that originates from social interactions into account, which are modelled as the so-called indirect genetic effects (IGE). Despite the considerable heritable variation in survival time due to IGE, genetic improvement of survival time in laying hens is still challenging because the detected heritable variation of the trait with IGE is still limited, ranging from 0.06 to 0.26, and individuals that are still alive at the end of the recording period are censored. Furthermore, survival time records are available late in life and only on females. To cope with these challenges, we tested the hypothesis that genomic prediction increases the accuracy of estimated breeding values (EBV) compared to parental average EBV, and increases response to selection for survival time compared to a traditional breeding scheme. We tested this hypothesis in two lines of brown layers with intact beaks, which show cannibalism, and also the hypothesis that the rate of inbreeding per year is lower for genomic selection than for the traditional breeding scheme. The standard deviation of genomic prediction EBV for survival time was around 22 days for both lines, indicating good prospects for selection against mortality in laying hens with intact beaks. Genomic prediction increased the accuracy of the EBV by 35 and 32 % compared to the parent average EBV for the two lines. At the current reference population size, predicted response to selection was 91 % higher when using genomic selection than with the traditional breeding scheme, as a result of a shorter generation interval in males and greater accuracy of selection in females. The predicted rate of inbreeding per generation with truncation selection was substantially lower for genomic selection than for the traditional breeding scheme for both lines. Genomic selection for socially affected traits is a promising tool for the improvement of survival time in laying hens with intact beaks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 16%
Researcher 5 16%
Student > Doctoral Student 4 13%
Student > Ph. D. Student 4 13%
Student > Bachelor 4 13%
Other 3 10%
Unknown 6 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 48%
Veterinary Science and Veterinary Medicine 3 10%
Medicine and Dentistry 2 6%
Biochemistry, Genetics and Molecular Biology 1 3%
Social Sciences 1 3%
Other 1 3%
Unknown 8 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2017.
All research outputs
#19,942,887
of 25,371,288 outputs
Outputs from Genetics Selection Evolution
#641
of 822 outputs
Outputs of similar age
#242,605
of 330,885 outputs
Outputs of similar age from Genetics Selection Evolution
#11
of 19 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 822 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,885 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.