↓ Skip to main content

Detection of Aβ plaque deposition in MR images based on pixel feature selection and class information in image level

Overview of attention for article published in BioMedical Engineering OnLine, September 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detection of Aβ plaque deposition in MR images based on pixel feature selection and class information in image level
Published in
BioMedical Engineering OnLine, September 2016
DOI 10.1186/s12938-016-0222-x
Pubmed ID
Authors

Yongming Li, Xueru Zhu, Pin Wang, Jie Wang, Shujun Liu, Fan Li, Mingguo Qiu

Abstract

Amyloid β-protein (Aβ) plaque deposition is an important prevention and treatment target for Alzheimer's disease (AD). As a noninvasive, nonradioactive and highly cost-effective clinical imaging method, magnetic resonance imaging (MRI) is the perfect imaging technology for the clinical diagnosis of AD, but it cannot display the plaque deposition directly. This paper resolves this problem based on pixel feature selection algorithms at the image level. Firstly, the brain region was segmented from mouse model brain MR images. Secondly, the pixels in the segmented brain region were extracted as a feature vector (features). Thirdly, feature selection was conducted on the extracted features, and the optimal feature subset was obtained. Fourthly, the various optimal feature subsets were obtained by repeating the same processing above. Fifthly, based on the optimal feature subsets, the final optimal feature subset was obtained by voting mechanism. Finally, using the final optimal selected features, the corresponding pixels on the MR images could be found and marked to show the information about Aβ plaque deposition. The MR images and brain histological image slices of twenty-two model mice were used in the experiments. Four feature selection algorithms were used on the MR images and six kinds of classification experiments are conducted, thereby choosing a pixel feature selection algorithm for further study. The experimental results showed that by using the pixel features selected by the algorithms in this paper, the best classification accuracy between early AD and control slides could be as high as 80 %. The selected and marked MR pixels could show information of Aβ plaque deposition without missing most of the Aβ plaque deposition compared with brain histological slice images. The hit rate is over than 90 %. According to the experimental results, the proposed detection algorithm of the Aβ plaque deposition based on MR pixel feature selection algorithm is effective. The proposed algorithm can detect the information of the Aβ plaque deposition on MR images and the information can be useful for improving the classification accuracy as assistant MR biomarker. Besides, these findings firstly show the feasibility of detection of the Aβ plaque deposition on MR images and provide reference method for interested relevant researchers in public.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 4%
Unknown 27 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 18%
Researcher 5 18%
Student > Master 4 14%
Student > Postgraduate 2 7%
Student > Doctoral Student 2 7%
Other 2 7%
Unknown 8 29%
Readers by discipline Count As %
Medicine and Dentistry 7 25%
Agricultural and Biological Sciences 4 14%
Computer Science 2 7%
Engineering 2 7%
Decision Sciences 1 4%
Other 3 11%
Unknown 9 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2016.
All research outputs
#3,621,892
of 25,374,647 outputs
Outputs from BioMedical Engineering OnLine
#76
of 867 outputs
Outputs of similar age
#57,874
of 329,612 outputs
Outputs of similar age from BioMedical Engineering OnLine
#3
of 16 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 867 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,612 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.