↓ Skip to main content

Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: clinical and biological correlations

Overview of attention for article published in Journal of Hematology & Oncology, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: clinical and biological correlations
Published in
Journal of Hematology & Oncology, September 2016
DOI 10.1186/s13045-016-0320-z
Pubmed ID
Authors

Gian Matteo Rigolin, Elena Saccenti, Cristian Bassi, Laura Lupini, Francesca Maria Quaglia, Maurizio Cavallari, Sara Martinelli, Luca Formigaro, Enrico Lista, Maria Antonella Bardi, Eleonora Volta, Elisa Tammiso, Aurora Melandri, Antonio Urso, Francesco Cavazzini, Massimo Negrini, Antonio Cuneo

Abstract

In chronic lymphocytic leukemia (CLL), next-generation sequencing (NGS) analysis represents a sensitive, reproducible, and resource-efficient technique for routine screening of gene mutations. We performed an extensive biologic characterization of newly diagnosed CLL, including NGS analysis of 20 genes frequently mutated in CLL and karyotype analysis to assess whether NGS and karyotype results could be of clinical relevance in the refinement of prognosis and assessment of risk of progression. The genomic DNA from peripheral blood samples of 200 consecutive CLL patients was analyzed using Ion Torrent Personal Genome Machine, a NGS platform that uses semiconductor sequencing technology. Karyotype analysis was performed using efficient mitogens. Mutations were detected in 42.0 % of cases with 42.8 % of mutated patients presenting 2 or more mutations. The presence of mutations by NGS was associated with unmutated IGHV gene (p = 0.009), CD38 positivity (p = 0.010), risk stratification by fluorescence in situ hybridization (FISH) (p < 0.001), and the complex karyotype (p = 0.003). A high risk as assessed by FISH analysis was associated with mutations affecting TP53 (p = 0.012), BIRC3 (p = 0.003), and FBXW7 (p = 0.003) while the complex karyotype was significantly associated with TP53, ATM, and MYD88 mutations (p = 0.003, 0.018, and 0.001, respectively). By multivariate analysis, the multi-hit profile (≥2 mutations by NGS) was independently associated with a shorter time to first treatment (p = 0.004) along with TP53 disruption (p = 0.040), IGHV unmutated status (p < 0.001), and advanced stage (p < 0.001). Advanced stage (p = 0.010), TP53 disruption (p < 0.001), IGHV unmutated status (p = 0.020), and the complex karyotype (p = 0.007) were independently associated with a shorter overall survival. At diagnosis, an extensive biologic characterization including NGS and karyotype analyses using novel mitogens may offer new perspectives for a better refinement of risk stratification that could be of help in the clinical management of CLL patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Other 6 12%
Student > Bachelor 6 12%
Researcher 6 12%
Student > Master 5 10%
Other 6 12%
Unknown 12 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 22%
Medicine and Dentistry 9 18%
Agricultural and Biological Sciences 8 16%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Unspecified 1 2%
Other 3 6%
Unknown 16 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2016.
All research outputs
#12,965,815
of 22,888,307 outputs
Outputs from Journal of Hematology & Oncology
#594
of 1,192 outputs
Outputs of similar age
#159,966
of 321,166 outputs
Outputs of similar age from Journal of Hematology & Oncology
#15
of 27 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,192 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.8. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,166 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.