↓ Skip to main content

Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints

Overview of attention for article published in Radiation Oncology, September 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

twitter
2 X users
patent
2 patents

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints
Published in
Radiation Oncology, September 2016
DOI 10.1186/s13014-016-0697-4
Pubmed ID
Authors

Lars König, Alexander Derksen, Nils Papenberg, Benjamin Haas

Abstract

Deformable image registration (DIR) is a key component in many radiotherapy applications. However, often resulting deformations are not satisfying, since varying deformation properties of different anatomical regions are not considered. To improve the plausibility of DIR in adaptive radiotherapy in the male pelvic area, this work integrates a local rigidity deformation model into a DIR algorithm. A DIR framework is extended by constraints, enforcing locally rigid deformation behavior for arbitrary delineated structures. The approach restricts those structures to rigid deformations, while surrounding tissue is still allowed to deform elastically. The algorithm is tested on ten CT/CBCT male pelvis datasets with active rigidity constraints on bones and prostate and compared to the Varian SmartAdapt deformable registration (VSA) on delineations of bladder, prostate and bones. The approach with no rigid structures (REG0) obtains an average dice similarity coefficient (DSC) of 0.87 ± 0.06 and a Hausdorff-Distance (HD) of 8.74 ± 5.95 mm. The new approach with rigid bones (REG1) yields a DSC of 0.87 ± 0.07, HD 8.91 ± 5.89 mm. Rigid deformation of bones and prostate (REG2) obtains 0.87 ± 0.06, HD 8.73 ± 6.01 mm, while VSA yields a DSC of 0.86 ± 0.07, HD 10.22 ± 6.62 mm. No deformation grid foldings are observed for REG0 and REG1 in 7 of 10 cases; for REG2 in 8 of 10 cases, with no grid foldings in prostate, an average of 0.08 % in bladder (REG2: no foldings) and 0.01 % inside the body contour. VSA exhibits grid foldings in each case, with an average percentage of 1.81 % for prostate, 1.74 % for bladder and 0.12 % for the body contour. While REG1 and REG2 keep bones rigid, elastic bone deformations are observed with REG0 and VSA. An average runtime of 26.2 s was achieved with REG1; 31.1 s with REG2, compared to 10.5 s with REG0 and 10.7 s with VMS. With accuracy in the range of VSA, the new approach with constraints delivers physically more plausible deformations in the pelvic area with guaranteed rigidity of arbitrary structures. Although the algorithm uses an advanced deformation model, clinically feasible runtimes are achieved.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 2%
Unknown 65 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 27%
Researcher 11 17%
Student > Master 7 11%
Student > Bachelor 5 8%
Student > Doctoral Student 4 6%
Other 10 15%
Unknown 11 17%
Readers by discipline Count As %
Computer Science 12 18%
Medicine and Dentistry 9 14%
Engineering 7 11%
Physics and Astronomy 5 8%
Mathematics 3 5%
Other 11 17%
Unknown 19 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2023.
All research outputs
#7,121,816
of 23,734,501 outputs
Outputs from Radiation Oncology
#341
of 2,119 outputs
Outputs of similar age
#104,511
of 322,614 outputs
Outputs of similar age from Radiation Oncology
#4
of 41 outputs
Altmetric has tracked 23,734,501 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 2,119 research outputs from this source. They receive a mean Attention Score of 2.7. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,614 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.