↓ Skip to main content

Correcting the impact of docking pose generation error on binding affinity prediction

Overview of attention for article published in BMC Bioinformatics, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Correcting the impact of docking pose generation error on binding affinity prediction
Published in
BMC Bioinformatics, September 2016
DOI 10.1186/s12859-016-1169-4
Pubmed ID
Authors

Hongjian Li, Kwong-Sak Leung, Man-Hon Wong, Pedro J. Ballester

Abstract

Pose generation error is usually quantified as the difference between the geometry of the pose generated by the docking software and that of the same molecule co-crystallised with the considered protein. Surprisingly, the impact of this error on binding affinity prediction is yet to be systematically analysed across diverse protein-ligand complexes. Against commonly-held views, we have found that pose generation error has generally a small impact on the accuracy of binding affinity prediction. This is also true for large pose generation errors and it is not only observed with machine-learning scoring functions, but also with classical scoring functions such as AutoDock Vina. Furthermore, we propose a procedure to correct a substantial part of this error which consists of calibrating the scoring functions with re-docked, rather than co-crystallised, poses. In this way, the relationship between Vina-generated protein-ligand poses and their binding affinities is directly learned. As a result, test set performance after this error-correcting procedure is much closer to that of predicting the binding affinity in the absence of pose generation error (i.e. on crystal structures). We evaluated several strategies, obtaining better results for those using a single docked pose per ligand than those using multiple docked poses per ligand. Binding affinity prediction is often carried out on the docked pose of a known binder rather than its co-crystallised pose. Our results suggest than pose generation error is in general far less damaging for binding affinity prediction than it is currently believed. Another contribution of our study is the proposal of a procedure that largely corrects for this error. The resulting machine-learning scoring function is freely available at http://istar.cse.cuhk.edu.hk/rf-score-4.tgz and http://ballester.marseille.inserm.fr/rf-score-4.tgz .

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 16%
Student > Ph. D. Student 7 12%
Student > Bachelor 7 12%
Researcher 6 10%
Other 2 3%
Other 7 12%
Unknown 20 34%
Readers by discipline Count As %
Chemistry 9 16%
Biochemistry, Genetics and Molecular Biology 7 12%
Computer Science 6 10%
Agricultural and Biological Sciences 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 4 7%
Other 3 5%
Unknown 24 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2018.
All research outputs
#13,244,941
of 22,889,074 outputs
Outputs from BMC Bioinformatics
#4,011
of 7,298 outputs
Outputs of similar age
#165,193
of 321,010 outputs
Outputs of similar age from BMC Bioinformatics
#54
of 124 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,298 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,010 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 124 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.