↓ Skip to main content

Stage-dependent fate of Plasmodium falciparum-infected red blood cells in the spleen and sickle-cell trait-related protection against malaria

Overview of attention for article published in Malaria Journal, September 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stage-dependent fate of Plasmodium falciparum-infected red blood cells in the spleen and sickle-cell trait-related protection against malaria
Published in
Malaria Journal, September 2016
DOI 10.1186/s12936-016-1522-0
Pubmed ID
Authors

Seidina A. S. Diakité, Papa Alioune Ndour, Valentine Brousse, Frederick Gay, Camille Roussel, Sylvestre Biligui, Michaël Dussiot, Virginie Prendki, Tatiana M. Lopera-Mesa, Karim Traoré, Drissa Konaté, Saibou Doumbia, Jérôme Cros, Safi Dokmak, Rick M. Fairhurst, Mahamadou Diakité, Pierre A. Buffet

Abstract

Sickle-cell trait (HbAS) reduces falciparum malaria risk and suppresses parasitaemia. Although several candidate mechanisms have been proposed, their epidemiological, clinical and experimental correlates have not been adequately explained. To explore the basis for generally lower parasitaemias and delayed malaria episodes in children with HbAS, it is hypothesized here that their spleen-dependent removal of ring-infected red blood cells (RBCs) is more efficient than in children with normal haemoglobin A (HbAA). The mechanical splenic retention of Plasmodium falciparum-infected RBCs from subjects with HbAS or HbAA was investigated using two physiologically relevant methods: microsphiltration and ex vivo spleen perfusion. P. falciparum-infected RBCs obtained from in vitro cultures and from patients were used in either normoxic or hypoxic conditions. The effect of sickling in ring-infected HbAS RBCs was also investigated. When a laboratory-adapted parasite strain was analysed, ring-infected HbAA RBCs were retained in microsphilters at similar or greater levels than ring-infected HbAS RBCs, under normoxic (retention rate 62.5 vs 43.8 %, P < 0.01) and hypoxic (54.0 vs 38.0 %, P = 0.11) conditions. When parasitized RBCs from Malian children were analysed, retention of ring-infected HbAA and HbAS RBCs was similar when tested either directly ex vivo (32.1 vs 28.7 %, P = 0.52) or after one re-invasion in vitro (55.9 vs 43.7 %, P = 0.30). In hypoxia, sickling of uninfected and ring-infected HbAS RBCs (8.6 vs 5.7 %, P = 0.51), and retention of ring-infected HbAA and HbAS RBCs in microsphilters (72.5 vs 68.8 %, P = 0.38) and spleens (41.2 vs 30.4 %, P = 0.11), also did not differ. Retention of HbAS and HbAA RBCs infected with mature P. falciparum stages was greater than 95 %. Sickle-cell trait is not associated with higher retention or sickling of ring-infected RBCs in experimental systems reflecting the mechanical sensing of RBCs by the human spleen. As observed with HbAA RBCs, HbAS RBCs infected with mature parasites are completely retained. Because the cytoadherence of HbAS RBCs infected with mature parasites is impaired, the very efficient splenic retention of such non-adherent infected RBCs is expected to result in a slower rise of P. falciparum parasitaemia in sickle-cell trait carriers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Student > Bachelor 5 15%
Student > Master 3 9%
Researcher 3 9%
Student > Doctoral Student 2 6%
Other 5 15%
Unknown 8 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 21%
Agricultural and Biological Sciences 5 15%
Medicine and Dentistry 5 15%
Immunology and Microbiology 2 6%
Engineering 2 6%
Other 3 9%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2016.
All research outputs
#17,817,005
of 22,889,074 outputs
Outputs from Malaria Journal
#4,866
of 5,579 outputs
Outputs of similar age
#229,799
of 320,659 outputs
Outputs of similar age from Malaria Journal
#98
of 118 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,579 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,659 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.