↓ Skip to main content

Analysis of HIV-1 intersubtype recombination breakpoints suggests region with high pairing probability may be a more fundamental factor than sequence similarity affecting HIV-1 recombination

Overview of attention for article published in Virology Journal, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Analysis of HIV-1 intersubtype recombination breakpoints suggests region with high pairing probability may be a more fundamental factor than sequence similarity affecting HIV-1 recombination
Published in
Virology Journal, September 2016
DOI 10.1186/s12985-016-0616-1
Pubmed ID
Authors

Lei Jia, Lin Li, Tao Gui, Siyang Liu, Hanping Li, Jingwan Han, Wei Guo, Yongjian Liu, Jingyun Li

Abstract

With increasing data on HIV-1, a more relevant molecular model describing mechanism details of HIV-1 genetic recombination usually requires upgrades. Currently an incomplete structural understanding of the copy choice mechanism along with several other issues in the field that lack elucidation led us to perform an analysis of the correlation between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarity to further explore structural mechanisms. Near full length sequences of URFs from Asia, Europe, and Africa (one sequence/patient), and representative sequences of worldwide CRFs were retrieved from the Los Alamos HIV database. Their recombination patterns were analyzed by jpHMM in detail. Then the relationships between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarities were investigated. Pearson correlation test showed that all URF groups and the CRF group exhibit the same breakpoint distribution pattern. Additionally, the Wilcoxon two-sample test indicated a significant and inexplicable limitation of recombination in regions with high pairing probability. These regions have been found to be strongly conserved across distinct biological states (i.e., strong intersubtype similarity), and genetic similarity has been determined to be a very important factor promoting recombination. Thus, the results revealed an unexpected disagreement between intersubtype similarity and breakpoint distribution, which were further confirmed by genetic similarity analysis. Our analysis reveals a critical conflict between results from natural HIV-1 isolates and those from HIV-1-based assay vectors in which genetic similarity has been shown to be a very critical factor promoting recombination. These results indicate the region with high-pairing probabilities may be a more fundamental factor affecting HIV-1 recombination than sequence similarity in natural HIV-1 infections. Our findings will be relevant in furthering the understanding of HIV-1 recombination mechanisms.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 36%
Student > Ph. D. Student 2 18%
Professor 1 9%
Student > Master 1 9%
Professor > Associate Professor 1 9%
Other 0 0%
Unknown 2 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 18%
Agricultural and Biological Sciences 2 18%
Medicine and Dentistry 2 18%
Nursing and Health Professions 1 9%
Sports and Recreations 1 9%
Other 1 9%
Unknown 2 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2016.
All research outputs
#20,342,896
of 22,889,074 outputs
Outputs from Virology Journal
#2,886
of 3,052 outputs
Outputs of similar age
#278,296
of 320,659 outputs
Outputs of similar age from Virology Journal
#40
of 44 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,052 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,659 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.