↓ Skip to main content

Transcriptome responses of an ungrafted Phytophthora root rot tolerant avocado (Persea americana) rootstock to flooding and Phytophthora cinnamomi

Overview of attention for article published in BMC Plant Biology, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome responses of an ungrafted Phytophthora root rot tolerant avocado (Persea americana) rootstock to flooding and Phytophthora cinnamomi
Published in
BMC Plant Biology, September 2016
DOI 10.1186/s12870-016-0893-2
Pubmed ID
Authors

B. J. Reeksting, N. A. Olivier, N. van den Berg

Abstract

Avocado (Persea americana Mill.) is a commercially important fruit crop worldwide. A major limitation to production is the oomycete Phytophthora cinnamomi, which causes root rot leading to branch-dieback and tree death. The decline of orchards infected with P. cinnamomi occurs much faster when exposed to flooding, even if flooding is only transient. Flooding is a multifactorial stress compromised of several individual stresses, making breeding and selection for tolerant varieties challenging. With more plantations occurring in marginal areas, with imperfect irrigation and drainage, understanding the response of avocado to these stresses will be important for the industry. Maintenance of energy production was found to be central in the response to flooding, as seen by up-regulation of transcripts related to glycolysis and induction of transcripts related to ethanolic fermentation. Energy-intensive processes were generally down-regulated, as evidenced by repression of transcripts related to processes such as secondary cell-wall biosynthesis as well as defence-related transcripts. Aquaporins were found to be down-regulated in avocado roots exposed to flooding, indicating reduced water-uptake under these conditions. The transcriptomic response of avocado to flooding and P. cinnamomi was investigated utilizing microarray analysis. Differences in the transcriptome caused by the presence of the pathogen were minor compared to transcriptomic perturbations caused by flooding. The transcriptomic response of avocado to flooding reveals a response to flooding that is conserved in several species. This data could provide key information that could be used to improve selection of stress tolerant rootstocks in the avocado industry.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 23%
Student > Ph. D. Student 11 17%
Student > Bachelor 9 14%
Other 4 6%
Student > Master 4 6%
Other 6 9%
Unknown 16 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 49%
Biochemistry, Genetics and Molecular Biology 3 5%
Nursing and Health Professions 3 5%
Computer Science 2 3%
Engineering 2 3%
Other 5 8%
Unknown 18 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2016.
All research outputs
#15,384,989
of 22,889,074 outputs
Outputs from BMC Plant Biology
#1,491
of 3,268 outputs
Outputs of similar age
#202,956
of 321,009 outputs
Outputs of similar age from BMC Plant Biology
#20
of 41 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,268 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,009 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.