↓ Skip to main content

Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome-based SNP genotyping

Overview of attention for article published in BMC Genomics, September 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome-based SNP genotyping
Published in
BMC Genomics, September 2016
DOI 10.1186/s12864-016-3079-2
Pubmed ID
Authors

Jun-Jun Liu, Anna W. Schoettle, Richard A. Sniezko, Rona N. Sturrock, Arezoo Zamany, Holly Williams, Amanda Ha, Danelle Chan, Bob Danchok, Douglas P. Savin, Angelia Kegley

Abstract

Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. Pinus flexilis E. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal pathogen Cronartium ribicola (J.C. Fisch.), has resulted in mortality in this conifer species and is still spreading through the distribution. The objective of this research was to develop P. flexilis transcriptome-wide single nucleotide polymorphism (SNP) markers using RNA-seq analysis for genetic mapping of the major gene (Cr4) that confers complete resistance to C. ribicola. Needle tissues of one resistant and two susceptible seedling families were subjected to RNA-seq analysis. In silico SNP markers were uncovered by mapping the RNA-seq reads back to the de novo assembled transcriptomes. A total of 110,573 in silico SNPs and 2,870 indels were identified with an average of 3.7 SNPs per Kb. These SNPs were distributed in 17,041 unigenes. Of these polymorphic P. flexilis unigenes, 6,584 were highly conserved as compared to the genome sequence of P. taeda L (loblolly pine). High-throughput genotyping arrays were designed and were used to search for Cr4-linked genic SNPs in megagametophyte populations of four maternal trees by haploid-segregation analysis. A total of 32 SNP markers in 25 genes were localized on the Cr4 linkage group (LG). Syntenic relationships of this Cr4-LG map with the model conifer species P. taeda anchored Cr4 on Pinus consensus LG8, indicating that R genes against C. ribicola have evolved independently in different five-needle pines. Functional genes close to Cr4 were annotated and their potential roles in Cr4-mediated resistance were further discussed. We demonstrated a very effective, low-cost strategy for developing a SNP genetic map of a phenotypic trait of interest. SNP discovery through transcriptome comparison was integrated with high-throughput genotyping of a small set of in silico SNPs. This strategy may be applied to mapping any trait in non-model plant species that have complex genomes. Whole transcriptome sequencing provides a powerful tool for SNP discovery in conifers and other species with complex genomes, for which sequencing and annotation of complex genomes is still challenging. The genic SNP map for the consensus Cr4-LG may help future molecular breeding efforts by enabling both Cr4 positional characterization and selection of this gene against WPBR.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 24%
Researcher 11 22%
Student > Bachelor 6 12%
Student > Master 6 12%
Professor 3 6%
Other 6 12%
Unknown 7 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 49%
Biochemistry, Genetics and Molecular Biology 9 18%
Environmental Science 4 8%
Medicine and Dentistry 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 2 4%
Unknown 8 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 August 2018.
All research outputs
#5,877,479
of 23,577,761 outputs
Outputs from BMC Genomics
#2,383
of 10,787 outputs
Outputs of similar age
#87,854
of 323,727 outputs
Outputs of similar age from BMC Genomics
#63
of 312 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 10,787 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,727 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 312 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.