↓ Skip to main content

Plasmodium vivax msp-3α polymorphisms: analysis in the Indian subcontinent

Overview of attention for article published in Malaria Journal, September 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plasmodium vivax msp-3α polymorphisms: analysis in the Indian subcontinent
Published in
Malaria Journal, September 2016
DOI 10.1186/s12936-016-1524-y
Pubmed ID
Authors

Anju Verma, Hema Joshi, Vineeta Singh, Anup Anvikar, Neena Valecha

Abstract

Plasmodium vivax is the most widely distributed human malaria parasite and accounts for approximately the same number of malaria cases as Plasmodium falciparum in India. Compared with P. falciparum, P. vivax is difficult to eradicate because of its tendency to cause relapses, which impacts treatment and control strategies. The genetic diversity of these parasites, particularly of the merozoite surface protein-3 alpha (msp-3α) gene, can be used to help develop a potential vaccine. The present study aimed to investigate the genetic diversity of P. vivax using the highly polymorphic antigen gene msp-3α and to assess the suitability of using this gene for population genetic studies of P. vivax isolates and was carried out in 2004-06. No recent study has been reported for MSP 3α in the recent decade in India. Limited reports are available on the genetic diversity of the P. vivax population in India; hence, this report aimed to improve the understanding of the molecular epidemiology of the parasite by studying the P. vivax msp-3α (Pvmsp-3α) marker from P. vivax field isolates from India. Field isolates were collected from different sites distributed across eight states in India. A total of 182 blood samples were analysed by a nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the HhaI and AluI restriction enzymes to determine genetic msp-3α variation among clinical P. vivax isolates. Based on the length variants of the PCR products of Pvmsp-3α gene, three allele sizes, Type A (1.8 kb), Type B (1.5 kb) and Type C (1.2 kb) were detected among the 182 samples. Type A PCR amplicon was more predominant (75.4 %) in the samples compared with the Type B (14.3 %) and Type C (10.0 %) polymorphisms. Among all of the samples analysed, 8.2 % were mixed infections detected by PCR alone. Restriction fragment length polymorphism (RFLP) analysis involving the restriction enzymes AluI and HhaI generated fragment sizes that were highly polymorphic and revealed substantial diversity at the nucleotide level. The present study is the first extensive study in India using the Pvmsp-3α marker. The results indicated that Pvmps-3α, a polymorphic genetic marker of P. vivax, exhibited considerable variability in infection prevalence in field isolates from India. Additionally, the mean multiplicity of infection observed at all of the study sites indicated that P. vivax is highly diverse in nature in India, and Pvmsp-3α is likely an effective and promising epidemiological marker.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 21%
Researcher 5 21%
Professor 2 8%
Student > Bachelor 2 8%
Student > Master 1 4%
Other 1 4%
Unknown 8 33%
Readers by discipline Count As %
Medicine and Dentistry 6 25%
Biochemistry, Genetics and Molecular Biology 4 17%
Agricultural and Biological Sciences 3 13%
Immunology and Microbiology 1 4%
Neuroscience 1 4%
Other 0 0%
Unknown 9 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2016.
All research outputs
#18,472,072
of 22,889,074 outputs
Outputs from Malaria Journal
#5,055
of 5,579 outputs
Outputs of similar age
#244,360
of 321,669 outputs
Outputs of similar age from Malaria Journal
#101
of 118 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,579 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 4th percentile – i.e., 4% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,669 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.