↓ Skip to main content

Production of infectious HCV genotype 1b virus in cell culture using a novel Set of adaptive mutations

Overview of attention for article published in BMC Microbiology, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Production of infectious HCV genotype 1b virus in cell culture using a novel Set of adaptive mutations
Published in
BMC Microbiology, September 2016
DOI 10.1186/s12866-016-0846-9
Pubmed ID
Authors

Ken-ichi Mori, Akihiro Matsumoto, Noboru Maki, Yuki Ichikawa, Eiji Tanaka, Shintaro Yagi

Abstract

Despite the high prevalence of genotype 1b hepatitis C virus (HCV) among patients, a cell culture system that permits entire viral life cycle of genotype 1b isolates is limited. To develop a cell-cultured hepatitis C virus (HCVcc) of genotype 1b, the proper combination of HCV genomic variants and host cells is essential. HCV genomes isolated from patients with distinctive symptoms may provide the variants required to establish an HCVcc of genotype 1b. We first established subgenomic replicons in Huh7 cells using HCV cDNAs isolated from two patients: one with fulminant hepatitis after liver transplantation (TPF1) and another with acute hepatitis and moderate symptoms (sAH). Replicons established from TPF1 and sAH showed mutations in NS4B and in NS3 and NS5A, respectively. Using these replication machineries, we constructed HCV genomic RNAs for each isolate. Virus infectivity was evaluated by a focus-forming assay, which is dependent on the intracellular expression of core antigen, and production of virus particles was assessed by density-gradient centrifugation. Infectious virus was only observed in the culture medium of cells transfected with TFP1 HCV RNA. A chimeric genome with the structural segment (5'-untranslated region [UTR] through NS2) from sAH and the replication machinery (NS3 through 3'-UTR) from TPF1 exhibited greater infectivity than did TFP1, despite formation of deficient virus particles in sAH, suggesting that this genomic segment potentiates virus particle formation. To identify the responsible variants, infectious virus formation was assessed in a chimeric genome carrying parts of the sAH structural segment of the TPF1 genome. A variant in NS2 (M170T) was identified that enhanced infectious virus formation. HCVcc carrying an NS2 gene encoding the M170T substitution and adaptive mutations in NS4B (referred to as TPF1-M170T) infected naïve cured Huh7 cells in a CD81-dependent manner. We established a novel HCVcc of genotype 1b in Huh7 cells by introducing an amino acid variant in NS2 and adaptive mutations in NS4B from HCV genomic RNA isolated from a patient with fulminant HCV after liver transplantation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 5 38%
Professor 3 23%
Student > Bachelor 1 8%
Student > Ph. D. Student 1 8%
Researcher 1 8%
Other 1 8%
Unknown 1 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 31%
Biochemistry, Genetics and Molecular Biology 3 23%
Medicine and Dentistry 3 23%
Chemistry 1 8%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2016.
All research outputs
#20,344,065
of 22,890,496 outputs
Outputs from BMC Microbiology
#2,695
of 3,197 outputs
Outputs of similar age
#280,134
of 322,819 outputs
Outputs of similar age from BMC Microbiology
#58
of 74 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,197 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,819 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.