↓ Skip to main content

Functional inclusion bodies produced in the yeast Pichia pastoris

Overview of attention for article published in Microbial Cell Factories, October 2016
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional inclusion bodies produced in the yeast Pichia pastoris
Published in
Microbial Cell Factories, October 2016
DOI 10.1186/s12934-016-0565-9
Pubmed ID
Authors

Fabián Rueda, Brigitte Gasser, Alejandro Sánchez-Chardi, Mònica Roldán, Sandra Villegas, Verena Puxbaum, Neus Ferrer-Miralles, Ugutz Unzueta, Esther Vázquez, Elena Garcia-Fruitós, Diethard Mattanovich, Antonio Villaverde

Abstract

Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 1%
Austria 1 1%
Unknown 91 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 16%
Researcher 15 16%
Student > Bachelor 13 14%
Student > Master 11 12%
Student > Doctoral Student 3 3%
Other 14 15%
Unknown 22 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 29 31%
Agricultural and Biological Sciences 23 25%
Engineering 4 4%
Immunology and Microbiology 4 4%
Medicine and Dentistry 3 3%
Other 6 6%
Unknown 24 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 October 2016.
All research outputs
#20,344,065
of 22,890,496 outputs
Outputs from Microbial Cell Factories
#1,367
of 1,604 outputs
Outputs of similar age
#281,319
of 324,317 outputs
Outputs of similar age from Microbial Cell Factories
#28
of 38 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,604 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,317 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.