↓ Skip to main content

Ion channels expression and function are strongly modified in solid tumors and vascular malformations

Overview of attention for article published in Journal of Translational Medicine, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ion channels expression and function are strongly modified in solid tumors and vascular malformations
Published in
Journal of Translational Medicine, October 2016
DOI 10.1186/s12967-016-1038-y
Pubmed ID
Authors

Antonella Biasiotta, Daniela D’Arcangelo, Francesca Passarelli, Ezio Maria Nicodemi, Antonio Facchiano

Abstract

Several cellular functions relate to ion-channels activity. Physiologically relevant chains of events leading to angiogenesis, cell cycle and different forms of cell death, require transmembrane voltage control. We hypothesized that the unordered angiogenesis occurring in solid cancers and vascular malformations might associate, at least in part, to ion-transport alteration. The expression level of several ion-channels was analyzed in human solid tumor biopsies. Expression of 90 genes coding for ion-channels related proteins was investigated within the Oncomine database, in 25 independent patients-datasets referring to five histologically-different solid tumors (namely, bladder cancer, glioblastoma, melanoma, breast invasive-ductal cancer, lung carcinoma), in a total of 3673 patients (674 control-samples and 2999 cancer-samples). Furthermore, the ion-channel activity was directly assessed by measuring in vivo the electrical sympathetic skin responses (SSR) on the skin of 14 patients affected by the flat port-wine stains vascular malformation, i.e., a non-tumor vascular malformation clinical model. Several ion-channels showed significantly increased expression in tumors (p < 0.0005); nine genes (namely, CACNA1D, FXYD3, FXYD5, HTR3A, KCNE3, KCNE4, KCNN4, CLIC1, TRPM3) showed such significant modification in at least half of datasets investigated for each cancer type. Moreover, in vivo analyses in flat port-wine stains patients showed a significantly reduced SSR in the affected skin as compared to the contralateral healthy skin (p < 0.05), in both latency and amplitude measurements. All together these data identify ion-channel genes showing significantly modified expression in different tumors and cancer-vessels, and indicate a relevant electrophysiological alteration in human vascular malformations. Such data suggest a possible role and a potential diagnostic application of the ion-electron transport in vascular disorders underlying tumor neo-angiogenesis and vascular malformations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 20%
Student > Master 11 20%
Student > Bachelor 9 17%
Researcher 5 9%
Other 4 7%
Other 5 9%
Unknown 9 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 22%
Agricultural and Biological Sciences 9 17%
Medicine and Dentistry 7 13%
Neuroscience 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Other 9 17%
Unknown 10 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2016.
All research outputs
#15,385,802
of 22,890,496 outputs
Outputs from Journal of Translational Medicine
#2,239
of 4,007 outputs
Outputs of similar age
#201,635
of 319,862 outputs
Outputs of similar age from Journal of Translational Medicine
#42
of 71 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,007 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,862 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 71 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.