↓ Skip to main content

Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1
Published in
Biotechnology for Biofuels and Bioproducts, October 2016
DOI 10.1186/s13068-016-0623-x
Pubmed ID
Authors

Jiangshan Ma, Keke Zhang, Mei Huang, Stanton B. Hector, Bin Liu, Chunyi Tong, Qian Liu, Jiarui Zeng, Yan Gao, Ting Xu, Ying Liu, Xuanming Liu, Yonghua Zhu

Abstract

Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe(2+) + H2O2 + H(+) → Fe(3+) + OH· + H2O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline (P < 0.001) in rice straw degradation. Pyrolysis gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy analysis revealed the consistency of chemical changes of rice straw components that exists between P. ananatis Sd-1 and Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe(3+)-reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P < 0.01) in rice straw cultures. Higher activities of GMC oxidoreductase and less hydrogen peroxide concentration in rice straw cultures relative to glucose cultures may be responsible for increasing rice straw degradation, which includes Fenton-like reactions. Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 14%
Student > Ph. D. Student 7 12%
Student > Bachelor 7 12%
Student > Master 5 9%
Professor > Associate Professor 2 4%
Other 6 11%
Unknown 22 39%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 14%
Agricultural and Biological Sciences 8 14%
Environmental Science 7 12%
Chemistry 3 5%
Engineering 2 4%
Other 6 11%
Unknown 23 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2016.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1,416
of 1,578 outputs
Outputs of similar age
#286,845
of 327,131 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#42
of 47 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,131 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.