↓ Skip to main content

BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks

Overview of attention for article published in BMC Developmental Biology, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks
Published in
BMC Developmental Biology, October 2016
DOI 10.1186/s12861-016-0133-x
Pubmed ID
Authors

Karen Beets, Michael W. Staring, Nathan Criem, Elke Maas, Niels Schellinx, Susana M. Chuva de Sousa Lopes, Lieve Umans, An Zwijsen

Abstract

Bone morphogenetic protein (BMP) signalling has emerged as a fundamental pathway in endothelial cell biology and deregulation of this pathway is implicated in several vascular disorders. BMP signalling output in endothelial cells is highly context- and dose-dependent. Phosphorylation of the BMP intracellular effectors, SMAD1/5/9, is routinely used to monitor BMP signalling activity. To better understand the in vivo context-dependency of BMP-SMAD signalling, we investigated differences in BMP-SMAD transcriptional activity in different vascular beds during mouse embryonic and postnatal stages. For this, we used the BRE::gfp BMP signalling reporter mouse in which the BMP response element (BRE) from the ID1-promotor, a SMAD1/5/9 target gene, drives the expression of GFP. A mosaic pattern of GFP was present in various angiogenic sprouting plexuses and in endocardium of cardiac cushions and trabeculae in the heart. High calibre veins seemed to be more BRE::gfp transcriptionally active than arteries, and ubiquitous activity was present in embryonic lymphatic vasculature. Postnatal lymphatic vessels showed however only discrete micro-domains of transcriptional activity. Dynamic shifts in transcriptional activity were also observed in the endocardium of the developing heart, with a general decrease in activity over time. Surprisingly, proliferative endothelial cells were almost never GFP-positive. Patches of transcriptional activity seemed to correlate with vasculature undergoing hemodynamic alterations. The BRE::gfp mouse allows to investigate selective context-dependent aspects of BMP-SMAD signalling. Our data reveals the highly dynamic nature of BMP-SMAD mediated transcriptional regulation in time and space throughout the vascular tree, supporting that BMP-SMAD signalling can be a source of phenotypic diversity in some, but not all, healthy endothelium. This knowledge can provide insight in vascular bed or organ-specific diseases and phenotypic heterogeneity within an endothelial cell population.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Student > Bachelor 7 16%
Researcher 7 16%
Student > Master 6 13%
Student > Doctoral Student 3 7%
Other 6 13%
Unknown 7 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 40%
Medicine and Dentistry 10 22%
Agricultural and Biological Sciences 6 13%
Psychology 1 2%
Unspecified 1 2%
Other 2 4%
Unknown 7 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2016.
All research outputs
#21,264,673
of 23,881,329 outputs
Outputs from BMC Developmental Biology
#331
of 359 outputs
Outputs of similar age
#281,213
of 322,909 outputs
Outputs of similar age from BMC Developmental Biology
#6
of 6 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 359 research outputs from this source. They receive a mean Attention Score of 4.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,909 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one.