↓ Skip to main content

Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides

Overview of attention for article published in Journal of Neuroinflammation, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides
Published in
Journal of Neuroinflammation, October 2016
DOI 10.1186/s12974-016-0735-z
Pubmed ID
Authors

Maria Pannell, Dominika Labuz, Melih Ö. Celik, Jacqueline Keye, Arvind Batra, Britta Siegmund, Halina Machelska

Abstract

During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10(5) cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the fluorescently labeled M0, M1, and M2 cells ex vivo showed that they remained in the nerve and preserved their phenotype. Perineural transplantation of M2 macrophages resulted in opioid-mediated amelioration of neuropathy-induced mechanical hypersensitivity, while M1 macrophages did not exacerbate pain. Therefore, rather than focusing on macrophage-induced pain generation, promoting opioid-mediated M2 actions may be more relevant for pain control.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 19%
Student > Ph. D. Student 16 16%
Student > Master 12 12%
Student > Bachelor 8 8%
Student > Doctoral Student 4 4%
Other 17 18%
Unknown 22 23%
Readers by discipline Count As %
Neuroscience 17 18%
Medicine and Dentistry 16 16%
Immunology and Microbiology 10 10%
Biochemistry, Genetics and Molecular Biology 8 8%
Pharmacology, Toxicology and Pharmaceutical Science 8 8%
Other 14 14%
Unknown 24 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2016.
All research outputs
#18,475,157
of 22,893,031 outputs
Outputs from Journal of Neuroinflammation
#2,077
of 2,645 outputs
Outputs of similar age
#242,461
of 320,336 outputs
Outputs of similar age from Journal of Neuroinflammation
#50
of 60 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,645 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,336 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 60 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.