↓ Skip to main content

Patterns of rapid diversification in heteroploid Knautia sect. Trichera (Caprifoliaceae, Dipsacoideae), one of the most intricate taxa of the European flora

Overview of attention for article published in BMC Ecology and Evolution, October 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
20 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Patterns of rapid diversification in heteroploid Knautia sect. Trichera (Caprifoliaceae, Dipsacoideae), one of the most intricate taxa of the European flora
Published in
BMC Ecology and Evolution, October 2016
DOI 10.1186/s12862-016-0773-2
Pubmed ID
Authors

Božo Frajman, Ivana Rešetnik, Marjan Niketić, Friedrich Ehrendorfer, Peter Schönswetter

Abstract

Polyploidy is one of the most important evolutionary pathways in flowering plants and has significantly contributed to their diversification and radiation. Due to the prevalence of reticulate evolution spanning three ploidy levels, Knautia is considered one of the taxonomically most intricate groups in the European flora. On the basis of ITS and plastid DNA sequences as well as AFLP fingerprints obtained from 381 populations of almost all species of the genus we asked the following questions. (1) Where and when did the initial diversification in Knautia take place, and how did it proceed further? (2) Did Knautia undergo a similarly recent (Pliocene/Pleistocene) rapid radiation as other genera with similar ecology and overlapping distribution? (3) Did polyploids evolve within the previously recognised diploid groups or rather from hybridisation between groups? The diversification of Knautia was centred in the Eastern Mediterranean. According to our genetic data, the genus originated in the Early Miocene and started to diversify in the Middle Miocene, whereas the onset of radiation of sect. Trichera was in central parts of the Balkan Peninsula, roughly 4 Ma. Extensive spread out of the Balkans started in the Pleistocene about 1.5 Ma. Diversification of sect. Trichera was strongly fostered by polyploidisation, which occurred independently many times. Tetraploids are observed in almost all evolutionary lineages whereas hexaploids are rarer and restricted to a few phylogenetic groups. Whether polyploids originated via autopolyploidy or allopolyploidy is unclear due to the weak genetic separation among species. In spite of the complexity of sect. Trichera, we present nine AFLP-characterised informal species groups, which coincide only partly with former traditional groups. Knautia sect. Trichera is a prime example for rapid diversification, mostly taking place during Pliocene and Pleistocene. Numerous cycles of habitat fragmentation and subsequent reconnections likely promoted hybridisation and polyploidisation. Extensive haplotype sharing and unresolved phylogenetic relationships suggest that these processes occurred rapidly and extensively. Thus, the dynamic polyploid evolution, the lack of crossing barriers within ploidy levels supported by conserved floral morphology, the highly variable leaf morphology and unstable indumentum composition prevent establishing a well-founded taxonomic framework.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Professor 4 20%
Student > Master 3 15%
Student > Bachelor 2 10%
Student > Doctoral Student 2 10%
Researcher 2 10%
Other 5 25%
Unknown 2 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 60%
Biochemistry, Genetics and Molecular Biology 3 15%
Environmental Science 1 5%
Medicine and Dentistry 1 5%
Unknown 3 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2017.
All research outputs
#17,285,036
of 25,371,288 outputs
Outputs from BMC Ecology and Evolution
#2,928
of 3,714 outputs
Outputs of similar age
#212,387
of 327,196 outputs
Outputs of similar age from BMC Ecology and Evolution
#74
of 91 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,196 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 91 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.