↓ Skip to main content

Derangement of calcium metabolism in diabetes mellitus: negative outcome from the synergy between impaired bone turnover and intestinal calcium absorption

Overview of attention for article published in The Journal of Physiological Sciences, September 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#7 of 493)
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
11 news outlets
twitter
6 X users

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Derangement of calcium metabolism in diabetes mellitus: negative outcome from the synergy between impaired bone turnover and intestinal calcium absorption
Published in
The Journal of Physiological Sciences, September 2016
DOI 10.1007/s12576-016-0487-7
Pubmed ID
Authors

Kannikar Wongdee, Nateetip Krishnamra, Narattaphol Charoenphandhu

Abstract

Both types 1 and 2 diabetes mellitus (T1DM and T2DM) are associated with profound deterioration of calcium and bone metabolism, partly from impaired intestinal calcium absorption, leading to a reduction in calcium uptake into the body. T1DM is associated with low bone mineral density (BMD) and osteoporosis, whereas the skeletal changes in T2DM are variable, ranging from normal to increased and to decreased BMD. However, both types of DM eventually compromise bone quality through production of advanced glycation end products and misalignment of collagen fibrils (so-called matrix failure), thereby culminating in a reduction of bone strength. The underlying cellular mechanisms (cellular failure) are related to suppression of osteoblast-induced bone formation and bone calcium accretion, as well as to enhancement of osteoclast-induced bone resorption. Several other T2DM-related pathophysiological changes, e.g., osteoblast insulin resistance, impaired productions of osteogenic growth factors (particularly insulin-like growth factor 1 and bone morphogenetic proteins), overproduction of pro-inflammatory cytokines, hyperglycemia, and dyslipidemia, also aggravate diabetic osteopathy. In the kidney, DM and the resultant hyperglycemia lead to calciuresis and hypercalciuria in both humans and rodents. Furthermore, DM causes deranged functions of endocrine factors related to mineral metabolism, e.g., parathyroid hormone, 1,25-dihydroxyvitamin D3, and fibroblast growth factor-23. Despite the wealth of information regarding impaired bone remodeling in DM, the long-lasting effects of DM on calcium metabolism in young growing individuals, pregnant women, and neonates born to women with gestational DM have received scant attention, and their underlying mechanisms are almost unknown and worth exploring.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 12%
Student > Ph. D. Student 9 12%
Researcher 7 9%
Student > Bachelor 5 7%
Student > Doctoral Student 5 7%
Other 7 9%
Unknown 33 44%
Readers by discipline Count As %
Medicine and Dentistry 17 23%
Biochemistry, Genetics and Molecular Biology 5 7%
Agricultural and Biological Sciences 5 7%
Social Sciences 3 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 8 11%
Unknown 35 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 92. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2024.
All research outputs
#472,702
of 25,888,937 outputs
Outputs from The Journal of Physiological Sciences
#7
of 493 outputs
Outputs of similar age
#8,874
of 332,334 outputs
Outputs of similar age from The Journal of Physiological Sciences
#1
of 12 outputs
Altmetric has tracked 25,888,937 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 493 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.9. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,334 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.