↓ Skip to main content

Fine-scale assessment of genetic diversity of trembling aspen in northwestern North America

Overview of attention for article published in BMC Ecology and Evolution, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fine-scale assessment of genetic diversity of trembling aspen in northwestern North America
Published in
BMC Ecology and Evolution, October 2016
DOI 10.1186/s12862-016-0810-1
Pubmed ID
Authors

Mathieu Latutrie, Yves Bergeron, Francine Tremblay

Abstract

In North America, the last ice age is the most recent event with severe consequences on boreal species' ranges. Phylogeographic patterns of range expansion in trembling aspen (Populus tremuloides) suggested that Beringia is likely to be a refugium and the "ice-free corridor" in Alberta may represent a region where small populations persisted during the last glacial maximum (LGM). The purpose of this study was to ascertain whether the origins of trembling aspen in western North America are reflected in the patterns of neutral genetic diversity and population structure. A total of 28 sites were sampled covering the northwestern part of aspen's distribution, from Saskatchewan to Alaska. Twelve microsatellite markers were used to describe patterns of genetic diversity. The genetic structure of trembling aspen populations was assessed by using multivariate analyses, Mantel correlograms, neighbor-joining trees and Bayesian analysis. Microsatellite markers revealed little to no neutral genetic structure of P. tremuloides populations in northwestern North America. Low differentiation among populations and small isolation by distance (IBD) were observed. The most probable number of clusters detected by STRUCTURE was K = 3 (∆K = 5.9). The individuals in the populations of the 3 clusters share a common gene pool and showed a high level of admixture. No evidence was found that either Beringia or the "ice-free corridor" were refugia. Highest allelic richness (AR) and lowest heterozygosity (Ho) were observed in Alberta foothills of the Rocky Mountains. Contrary to our hypothesis, our results showed that microsatellite markers revealed little to no genetic structure in P. tremuloides populations. Consequently, no divergent populations were observed near supposed refugia. The lack of detectable refugia in Beringia and in the "ice-free corridor" was due to high levels of gene flow between trembling apsen populations. More favorable environmental conditions for sexual reproduction and successful trembling aspen seedling establishment may have contributed to increase allelic richness through recombination in populations from the Albertan foothills of the Rocky Mountains.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 22%
Student > Ph. D. Student 3 17%
Student > Doctoral Student 2 11%
Student > Master 2 11%
Student > Bachelor 1 6%
Other 3 17%
Unknown 3 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 67%
Biochemistry, Genetics and Molecular Biology 1 6%
Environmental Science 1 6%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 September 2017.
All research outputs
#14,915,133
of 25,374,917 outputs
Outputs from BMC Ecology and Evolution
#2,489
of 3,714 outputs
Outputs of similar age
#171,463
of 321,047 outputs
Outputs of similar age from BMC Ecology and Evolution
#59
of 90 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,047 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.