↓ Skip to main content

Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors

Overview of attention for article published in Radiation Oncology, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
2 X users
facebook
2 Facebook pages

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors
Published in
Radiation Oncology, November 2016
DOI 10.1186/s13014-016-0725-4
Pubmed ID
Authors

Bin Liang, Bo Liu, Fugen Zhou, Fang-fang Yin, Qiuwen Wu

Abstract

In volumetric modulated arc therapy (VMAT), gantry angles, dose rate and the MLC positions vary with the radiation delivery. The quality assurance (QA) system should be able to catch the planning and machine errors. The aim of this study was to investigate the sensitivity of three VMAT QA systems to machine errors. Several types of potential linac machine errors unique to VMAT delivery were simulated in sinusoidal function of gantry angle, including gantry angle itself, MLC position and linac output. Two commercial QA systems, ArcCheck and Delta(4), and an in-house developed EPID technique were compared in this study. Fifteen full arcs from head and neck plans were selected and modified to include five magnitudes of each type of error, resulting in measurements and γ analyses of 240 arcs on each system. Both qualitative and quantitative comparisons were performed using receiver operating characteristic (ROC), γ pass rate gradient, and overlap histogram methods. In ROC analysis, the area under curve (AUC) represents the sensitivity and increases with the error magnitude. Using the criteria of 2 %/2 mm/2° (angle to agreement, ATA, only for EPID) and keeping AUC > 0.95, the minimum error detectable of ArcCheck, Delta(4) and EPID are (2, 3, 3)° in gantry angle and (4, 2, 3) mm in MLC positions for the head and neck plans. No system is sensitive to the simulated output error, the AUC values were all below 0.70 even with 5 % output error. The γ gradient for gantry angle, MLC position and output errors are (-5.1, -2.6, -3.6)%/°, (-2.6, -7.1, -3.3)%/mm and (-0.2, -0.2, -0.3)%/% for ArcCheck, Delta(4) and EPID, respectively. Therefore, these two analyses are consistent and support the same conclusion. The ATA parameter in EPID technique can be adjusted to tune its sensitivity. We found that ArcCheck is more sensitive to gantry angle error and Delta(4) is more sensitive to MLC position error. All three systems are not sensitive to the simulated output error. With additional analysis parameter, the EPID technique can be tuned to have optimal sensitivity and is able to perform QA for full field size with highest resolution. In addition, ROC analysis avoids the choice of γ pass rate threshold and is more robust compared with other analysis methods.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 19%
Student > Master 11 15%
Student > Ph. D. Student 9 12%
Other 8 11%
Lecturer 5 7%
Other 9 12%
Unknown 17 23%
Readers by discipline Count As %
Physics and Astronomy 27 37%
Medicine and Dentistry 11 15%
Nursing and Health Professions 4 5%
Engineering 4 5%
Business, Management and Accounting 1 1%
Other 4 5%
Unknown 22 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 April 2017.
All research outputs
#14,869,124
of 22,899,952 outputs
Outputs from Radiation Oncology
#907
of 2,060 outputs
Outputs of similar age
#187,488
of 312,379 outputs
Outputs of similar age from Radiation Oncology
#8
of 34 outputs
Altmetric has tracked 22,899,952 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,060 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,379 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.