↓ Skip to main content

Evidence for L1-associated DNA rearrangements and negligible L1 retrotransposition in glioblastoma multiforme

Overview of attention for article published in Mobile DNA, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evidence for L1-associated DNA rearrangements and negligible L1 retrotransposition in glioblastoma multiforme
Published in
Mobile DNA, November 2016
DOI 10.1186/s13100-016-0076-6
Pubmed ID
Authors

Patricia E. Carreira, Adam D. Ewing, Guibo Li, Stephanie N. Schauer, Kyle R. Upton, Allister C. Fagg, Santiago Morell, Michaela Kindlova, Patricia Gerdes, Sandra R. Richardson, Bo Li, Daniel J. Gerhardt, Jun Wang, Paul M. Brennan, Geoffrey J. Faulkner

Abstract

LINE-1 (L1) retrotransposons are a notable endogenous source of mutagenesis in mammals. Notably, cancer cells can support unusual L1 retrotransposition and L1-associated sequence rearrangement mechanisms following DNA damage. Recent reports suggest that L1 is mobile in epithelial tumours and neural cells but, paradoxically, not in brain cancers. Here, using retrotransposon capture sequencing (RC-seq), we surveyed L1 mutations in 14 tumours classified as glioblastoma multiforme (GBM) or as a lower grade glioma. In four GBM tumours, we characterised one probable endonuclease-independent L1 insertion, two L1-associated rearrangements and one likely Alu-Alu recombination event adjacent to an L1. These mutations included PCR validated intronic events in MeCP2 and EGFR. Despite sequencing L1 integration sites at up to 250× depth by RC-seq, we found no tumour-specific, endonuclease-dependent L1 insertions. Whole genome sequencing analysis of the tumours carrying the MeCP2 and EGFR L1 mutations also revealed no endonuclease-dependent L1 insertions. In a complementary in vitro assay, wild-type and endonuclease mutant L1 reporter constructs each mobilised very inefficiently in four cultured GBM cell lines. These experiments altogether highlight the consistent absence of canonical L1 retrotransposition in GBM tumours and cultured cell lines, as well as atypical L1-associated sequence rearrangements following DNA damage in vivo.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 25%
Student > Bachelor 7 13%
Student > Doctoral Student 5 10%
Student > Master 4 8%
Professor > Associate Professor 4 8%
Other 11 21%
Unknown 8 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 25%
Agricultural and Biological Sciences 13 25%
Medicine and Dentistry 8 15%
Computer Science 2 4%
Neuroscience 2 4%
Other 3 6%
Unknown 11 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2017.
All research outputs
#14,445,152
of 24,242,692 outputs
Outputs from Mobile DNA
#246
of 344 outputs
Outputs of similar age
#169,375
of 315,185 outputs
Outputs of similar age from Mobile DNA
#5
of 7 outputs
Altmetric has tracked 24,242,692 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 344 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,185 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.