↓ Skip to main content

CMIC: predicting DNA methylation inheritance of CpG islands with embedding vectors of variable-length k-mers

Overview of attention for article published in BMC Bioinformatics, September 2022
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
11 X users

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CMIC: predicting DNA methylation inheritance of CpG islands with embedding vectors of variable-length k-mers
Published in
BMC Bioinformatics, September 2022
DOI 10.1186/s12859-022-04916-3
Pubmed ID
Authors

Osamu Maruyama, Yinuo Li, Hiroki Narita, Hidehiro Toh, Wan Kin Au Yeung, Hiroyuki Sasaki

Abstract

Epigenetic modifications established in mammalian gametes are largely reprogrammed during early development, however, are partly inherited by the embryo to support its development. In this study, we examine CpG island (CGI) sequences to predict whether a mouse blastocyst CGI inherits oocyte-derived DNA methylation from the maternal genome. Recurrent neural networks (RNNs), including that based on gated recurrent units (GRUs), have recently been employed for variable-length inputs in classification and regression analyses. One advantage of this strategy is the ability of RNNs to automatically learn latent features embedded in inputs by learning their model parameters. However, the available CGI dataset applied for the prediction of oocyte-derived DNA methylation inheritance are not large enough to train the neural networks. We propose a GRU-based model called CMIC (CGI Methylation Inheritance Classifier) to augment CGI sequence by converting it into variable-length k-mers, where the length k is randomly selected from the range [Formula: see text] to [Formula: see text], N times, which were then used as neural network input. N was set to 1000 in the default setting. In addition, we proposed a new embedding vector generator for k-mers called splitDNA2vec. The randomness of this procedure was higher than the previous work, dna2vec. We found that CMIC can predict the inheritance of oocyte-derived DNA methylation at CGIs in the maternal genome of blastocysts with a high F-measure (0.93). We also show that the F-measure can be improved by increasing the parameter N, that is, the number of sequences of variable-length k-mers derived from a single CGI sequence. This implies the effectiveness of augmenting input data by converting a DNA sequence to N sequences of variable-length k-mers. This approach can be applied to different DNA sequence classification and regression analyses, particularly those involving a small amount of data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 1 50%
Unknown 1 50%
Readers by discipline Count As %
Social Sciences 1 50%
Unknown 1 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 September 2022.
All research outputs
#6,737,312
of 24,476,221 outputs
Outputs from BMC Bioinformatics
#2,438
of 7,542 outputs
Outputs of similar age
#123,133
of 422,574 outputs
Outputs of similar age from BMC Bioinformatics
#29
of 141 outputs
Altmetric has tracked 24,476,221 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 7,542 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,574 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 141 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.