↓ Skip to main content

Effects of gastrointestinal tissue structure on computed dipole vectors

Overview of attention for article published in BioMedical Engineering OnLine, October 2007
Altmetric Badge

Readers on

mendeley
16 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of gastrointestinal tissue structure on computed dipole vectors
Published in
BioMedical Engineering OnLine, October 2007
DOI 10.1186/1475-925x-6-39
Pubmed ID
Authors

Travis M Austin, Liren Li, Andrew J Pullan, Leo K Cheng

Abstract

Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathematical modelling of the underlying processes may help provide additional information. When modelling myoelectrical activity, it is common for the electrical field to be represented by equivalent dipole sources. The gastrointestinal system is comprised of alternating layers of smooth muscle (SM) cells and Interstitial Cells of Cajal (ICC). In addition the small intestine has regions of high curvature as the intestine bends back upon itself. To eventually use modelling diagnostically, we must improve our understanding of the effect that intestinal structure has on dipole vector behaviour. Normal intestine electrical behaviour was simulated on simple geometries using a monodomain formulation. The myoelectrical fields were then represented by their dipole vectors and an examination on the effect of structure was undertaken. The 3D intestine model was compared to a more computationally efficient 1D representation to determine the differences on the resultant dipole vectors. In addition, the conductivity values and the thickness of the different muscle layers were varied in the 3D model and the effects on the dipole vectors were investigated. The dipole vector orientations were largely affected by the curvature and by a transmural gradient in the electrical wavefront caused by the different properties of the SM and ICC layers. This gradient caused the dipoles to be oriented at an angle to the principal direction of electrical propagation. This angle increased when the ratio of the longitudinal and circular muscle was increased or when the the conductivity along and across the layers was increased. The 1D model was able to represent the geometry of the small intestine and successfully captured the propagation of the slow wave down the length of the mesh, however, it was unable to represent transmural diffusion within each layer, meaning the equivalent dipole sources were missing a lateral component and a reduced magnitude when compared to the full 3D models. The structure of the intestinal wall affected the potential gradient through the wall and the orientation and magnitude of the dipole vector. We have seen that the models with a symmetrical wall structure and extreme anisotropic conductivities had similar characteristics in their dipole magnitudes and orientations to the 1D model. If efficient 1D models are used instead of 3D models, then both the differences in magnitude and orientation need to be accounted for.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 6%
Unknown 15 94%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 13%
Student > Master 2 13%
Professor > Associate Professor 2 13%
Researcher 2 13%
Student > Ph. D. Student 2 13%
Other 3 19%
Unknown 3 19%
Readers by discipline Count As %
Engineering 6 38%
Medicine and Dentistry 3 19%
Agricultural and Biological Sciences 1 6%
Chemistry 1 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Other 0 0%
Unknown 4 25%