↓ Skip to main content

RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation

Overview of attention for article published in BMC Genomics, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation
Published in
BMC Genomics, November 2016
DOI 10.1186/s12864-016-3228-7
Pubmed ID
Authors

Christian Gluck, Sangwon Min, Akinsola Oyelakin, Kirsten Smalley, Satrajit Sinha, Rose-Anne Romano

Abstract

Mouse models have served a valuable role in deciphering various facets of Salivary Gland (SG) biology, from normal developmental programs to diseased states. To facilitate such studies, gene expression profiling maps have been generated for various stages of SG organogenesis. However these prior studies fall short of capturing the transcriptional complexity due to the limited scope of gene-centric microarray-based technology. Compared to microarray, RNA-sequencing (RNA-seq) offers unbiased detection of novel transcripts, broader dynamic range and high specificity and sensitivity for detection of genes, transcripts, and differential gene expression. Although RNA-seq data, particularly under the auspices of the ENCODE project, have covered a large number of biological specimens, studies on the SG have been lacking. To better appreciate the wide spectrum of gene expression profiles, we isolated RNA from mouse submandibular salivary glands at different embryonic and adult stages. In parallel, we processed RNA-seq data for 24 organs and tissues obtained from the mouse ENCODE consortium and calculated the average gene expression values. To identify molecular players and pathways likely to be relevant for SG biology, we performed functional gene enrichment analysis, network construction and hierarchal clustering of the RNA-seq datasets obtained from different stages of SG development and maturation, and other mouse organs and tissues. Our bioinformatics-based data analysis not only reaffirmed known modulators of SG morphogenesis but revealed novel transcription factors and signaling pathways unique to mouse SG biology and function. Finally we demonstrated that the unique SG gene signature obtained from our mouse studies is also well conserved and can demarcate features of the human SG transcriptome that is different from other tissues. Our RNA-seq based Atlas has revealed a high-resolution cartographic view of the dynamic transcriptomic landscape of the mouse SG at various stages. These RNA-seq datasets will complement pre-existing microarray based datasets, including the Salivary Gland Molecular Anatomy Project by offering a broader systems-biology based perspective rather than the classical gene-centric view. Ultimately such resources will be valuable in providing a useful toolkit to better understand how the diverse cell population of the SG are organized and controlled during development and differentiation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 2%
Unknown 57 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 28%
Researcher 10 17%
Student > Bachelor 7 12%
Student > Master 5 9%
Student > Doctoral Student 4 7%
Other 4 7%
Unknown 12 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 36%
Agricultural and Biological Sciences 13 22%
Neuroscience 2 3%
Engineering 2 3%
Chemistry 2 3%
Other 6 10%
Unknown 12 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2016.
All research outputs
#20,353,668
of 22,901,818 outputs
Outputs from BMC Genomics
#9,300
of 10,674 outputs
Outputs of similar age
#233,233
of 270,398 outputs
Outputs of similar age from BMC Genomics
#164
of 220 outputs
Altmetric has tracked 22,901,818 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,674 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,398 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 220 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.