↓ Skip to main content

Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit

Overview of attention for article published in BMC Genomics, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit
Published in
BMC Genomics, November 2016
DOI 10.1186/s12864-016-3275-0
Pubmed ID
Authors

Qiang Liu, Youping Sun, Jinzheng Chen, Peiwang Li, Changzhu Li, Genhua Niu, Lijuan Jiang

Abstract

Symplocos paniculata, asiatic sweetleaf or sapphire berry, is a widespread shrub or small tree from Symplocaceae with high oil content and excellent fatty acid composition in fruit. It has been used as feedstocks for biodiesel and cooking oil production in China. Little transcriptome information is available on the regulatory molecular mechanism of oil accumulation at different fruit development stages. The transcriptome at four different stages of fruit development (10, 80,140, and 170 days after flowering) of S. paniculata were analyzed. Approximately 28 million high quality clean reads were generated. These reads were trimmed and assembled into 182,904 non-redundant putative transcripts with a mean length of 592.91 bp and N50 length of 785 bp, respectively. Based on the functional annotation through Basic Local Alignment Search Tool (BLAST) with public protein database, the key enzymes involved in lipid metabolism were identified, and a schematic diagram of the pathway and temporal expression patterns of lipid metabolism was established. About 13,939 differentially expressed unigenes (DEGs) were screened out using differentially expressed sequencing (DESeq) method. The transcriptional regulatory patterns of the identified enzymes were highly related to the dynamic oil accumulation along with the fruit development of S. paniculata. In addition, quantitative real-time PCR (qRT-PCR) of six vital genes was significantly correlated with DESeq data. The transcriptome sequences obtained and deposited in NCBI would enrich the public database and provide an unprecedented resource for the discovery of the genes associated with lipid metabolism pathway in S. paniculata. Results in this study will lay the foundation for exploring transcriptional regulatory profiles, elucidating molecular regulatory mechanisms, and accelerating genetic engineering process to improve the yield and quality of seed oil of S. paniculata.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 18%
Student > Master 3 14%
Researcher 2 9%
Student > Ph. D. Student 2 9%
Student > Postgraduate 2 9%
Other 2 9%
Unknown 7 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 36%
Biochemistry, Genetics and Molecular Biology 5 23%
Environmental Science 1 5%
Engineering 1 5%
Unknown 7 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 September 2017.
All research outputs
#14,558,031
of 23,314,015 outputs
Outputs from BMC Genomics
#5,755
of 10,742 outputs
Outputs of similar age
#153,884
of 271,627 outputs
Outputs of similar age from BMC Genomics
#105
of 220 outputs
Altmetric has tracked 23,314,015 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,742 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 271,627 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 220 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.