↓ Skip to main content

2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: immunomodulation and beta-cell regeneration

Overview of attention for article published in Inflammation and Regeneration, November 2022
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: immunomodulation and beta-cell regeneration
Published in
Inflammation and Regeneration, November 2022
DOI 10.1186/s41232-022-00241-7
Pubmed ID
Authors

Basak Isildar, Serbay Ozkan, Merve Ercin, Selda Gezginci-Oktayoglu, Mahmut Oncul, Meral Koyuturk

Abstract

Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disease characterized by the irreversible destruction of insulin-producing β-cells in pancreatic islets. Helper and cytotoxic T-cells and cytokine production, which is impaired by this process, take a synergetic role in β-cell destruction, and hyperglycemia develops due to insulin deficiency in the body. Mesenchymal stem cells (MSCs) appear like an excellent therapeutic tool for autoimmune diseases with pluripotent, regenerative, and immunosuppressive properties. Paracrine factors released from MSCs play a role in immunomodulation by increasing angiogenesis and proliferation and suppressing apoptosis. In this context, the study aims to investigate the therapeutic effects of MSC's secretomes by conditioned medium (CM) obtained from human umbilical cord-derived MSCs cultured in 2-dimensional (2D) and 3-dimensional (3D) environments in the T1D model. First, MSCs were isolated from the human umbilical cord, and the cells were characterized. Then, two different CMs were prepared by culturing MSCs in 2D and 3D environments. The CM contents were analyzed in terms of total protein, IL-4, IL-10, IL-17, and IFN-λ. In vivo studies were performed in Sprague-Dawley-type rats with an autoimmune T1D model, and twelve doses of CM were administered intraperitoneally for 4 weeks within the framework of a particular treatment model. In order to evaluate immunomodulation, the Treg population was determined in lymphocytes isolated from the spleen after sacrification, and IL-4, IL-10, IL-17, and IFN-λ cytokines were analyzed in serum. Finally, β-cell regeneration was evaluated immunohistochemically by labeling Pdx1, Nkx6.1, and insulin markers, which are critical for the formation of β-cells. Total protein and IL-4 levels were higher in 3D-CM compared to 2D-CM. In vivo results showed that CMs induce the Treg population and regulate cytokine release. When the immunohistochemical results were evaluated together, it was determined that CM application significantly increased the rate of β-cells in the islets. This increase was at the highest level in the 3D-CM applied group. The dual therapeutic effect of MSC-CM on immunomodulation and homeostasis/regeneration of β-cells in the T1D model has been demonstrated. Furthermore, this effect could be improved by using 3D scaffolds for culturing MSCs while preparing CM.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 20%
Student > Doctoral Student 2 13%
Student > Bachelor 2 13%
Other 1 7%
Student > Master 1 7%
Other 1 7%
Unknown 5 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 40%
Medicine and Dentistry 2 13%
Materials Science 1 7%
Immunology and Microbiology 1 7%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2022.
All research outputs
#15,184,741
of 25,392,582 outputs
Outputs from Inflammation and Regeneration
#118
of 258 outputs
Outputs of similar age
#208,793
of 486,670 outputs
Outputs of similar age from Inflammation and Regeneration
#7
of 18 outputs
Altmetric has tracked 25,392,582 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 258 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.8. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 486,670 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.