↓ Skip to main content

A transcriptome-based model of central memory CD4 T cell death in HIV infection

Overview of attention for article published in BMC Genomics, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A transcriptome-based model of central memory CD4 T cell death in HIV infection
Published in
BMC Genomics, November 2016
DOI 10.1186/s12864-016-3308-8
Pubmed ID
Authors

Gustavo Olvera-García, Tania Aguilar-García, Fany Gutiérrez-Jasso, Iván Imaz-Rosshandler, Claudia Rangel-Escareño, Lorena Orozco, Irma Aguilar-Delfín, Joel A. Vázquez-Pérez, Joaquín Zúñiga, Santiago Pérez-Patrigeon, Enrique Espinosa

Abstract

Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 2%
Unknown 40 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 15%
Student > Master 6 15%
Researcher 4 10%
Student > Bachelor 4 10%
Student > Doctoral Student 3 7%
Other 8 20%
Unknown 10 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 20%
Immunology and Microbiology 7 17%
Biochemistry, Genetics and Molecular Biology 6 15%
Medicine and Dentistry 3 7%
Nursing and Health Professions 1 2%
Other 5 12%
Unknown 11 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2016.
All research outputs
#20,355,479
of 22,903,988 outputs
Outputs from BMC Genomics
#9,300
of 10,674 outputs
Outputs of similar age
#348,883
of 415,136 outputs
Outputs of similar age from BMC Genomics
#183
of 243 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,674 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,136 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 243 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.