↓ Skip to main content

Eigenspace-based beamformer using oblique signal subspace projection for ultrasound plane-wave imaging

Overview of attention for article published in BioMedical Engineering OnLine, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Eigenspace-based beamformer using oblique signal subspace projection for ultrasound plane-wave imaging
Published in
BioMedical Engineering OnLine, November 2016
DOI 10.1186/s12938-016-0244-4
Pubmed ID
Authors

Saeid Aliabadi, Yuanyuan Wang, Jinhua Yu, Jinxin Zhao, Wei Guo, Shun Zhang

Abstract

The Eigenspace-based beamformers, by orthogonal projection of signal subspace, can remove a large part of the noise, and provide better imaging contrast upon the minimum variance beamformer. However, wrong estimate of signal and noise component may bring dark-spot artifacts and distort the signal intensity. The signal component and noise and interference components are considered uncorrelated in conventional eigenspace-based beamforming methods. In ultrasound imaging, however, signal and noise are highly correlated. Therefore, the oblique projection instead of orthogonal projection should be taken into account in the denoising procedure of eigenspace-based beamforming algorithm. In this paper, we propose a novel eigenspace-based beamformer based on the oblique subspace projection that allows for consideration of the signal and noise correlation. Signal-to-interference-pulse-noise ratio and an eigen-decomposing scheme are investigated to propose a new signal and noise subspaces identification. To calculate the beamformer weights, the minimum variance weight vector is projected onto the signal subspace along the noise subspace via an oblique projection matrix. We have assessed the performance of proposed beamformer by using both simulated software and real data from Verasonics system. The results have exhibited the improved imaging qualities of the proposed beamformer in terms of imaging resolution, speckle preservation, imaging contrast, and dynamic range. Results have shown that, in ultrasound imaging, oblique projection is more sensible and effective than orthogonal subspace projection. Better signal and speckle preservation could be obtained by oblique projection compare to orthogonal projection. Also shadowing artifacts around the hyperechoic targets have been eliminated. Implementation the new subspace identification has enhanced the imaging resolution of the minimum variance beamformer due to the increasing the signal power in direction of arrival. Also it has offered better sidelobe suppression and a higher dynamic range.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Student > Doctoral Student 2 8%
Researcher 2 8%
Student > Bachelor 1 4%
Professor 1 4%
Other 3 13%
Unknown 11 46%
Readers by discipline Count As %
Engineering 9 38%
Unspecified 1 4%
Computer Science 1 4%
Agricultural and Biological Sciences 1 4%
Social Sciences 1 4%
Other 1 4%
Unknown 10 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 November 2016.
All research outputs
#18,483,671
of 22,903,988 outputs
Outputs from BioMedical Engineering OnLine
#563
of 822 outputs
Outputs of similar age
#303,116
of 415,133 outputs
Outputs of similar age from BioMedical Engineering OnLine
#10
of 18 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 822 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,133 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.