↓ Skip to main content

Role of nitric oxide in muscle regeneration following eccentric muscle contractions in rat skeletal muscle

Overview of attention for article published in The Journal of Physiological Sciences, April 2013
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of nitric oxide in muscle regeneration following eccentric muscle contractions in rat skeletal muscle
Published in
The Journal of Physiological Sciences, April 2013
DOI 10.1007/s12576-013-0262-y
Pubmed ID
Authors

Tomonobu Sakurai, Osamu Kashimura, Yutaka Kano, Hideki Ohno, Li Li Ji, Tetsuya Izawa, Thomas M. Best

Abstract

We examined the role of nitric oxide (NO) in muscle repair and regeneration following repetitive eccentric contractions (ECC). A standardized exercise protocol was used to create eccentric contraction-induced injury to the left tibialis anterior muscle of 48 male Wistar rats (body wt 250-350 g), using a customized isokinetic test device and a bout of 40 ECCs under electrical stimulation. A nitric oxide synthase inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME; 35 mg kg(-1) day(-1)), was included in the diet for half the animals (n = 24) beginning 3 days prior to the ECC and continuing throughout the experiment, whereas the other half (n = 24) received a control diet. ECC/+L-NAME and ECC/-L-NAME were killed after the ECC protocol at 0, 1, 3 and 7 days (n = 6 on each day). An unexercised contralateral limb with and without L-NAME infusion served as a respective control muscle at each time point. Muscle NO content, skeletal muscle damage, leukocyte infiltration, calpain activity, and MyoD and myogenin expression were assessed. NO has both pro-inflammatory and anti-inflammatory properties, and several possible roles for NO in skeletal muscle damage have been postulated. NO content was greater in the ECC/-L-NAME group at all time points (p < 0.05) compared to ECC/+L-NAME. Additionally, significant differences in NO content were observed on day 0 (p < 0.05), and day 3 (p < 0.05), ECC/+L-NAME versus ECC/-L-NAME. One day following the bout of ECC, and NO levels were increased in the ECC/-L-NAME group. Three days following ECC, there was greater myofiber damage (measured by β-glucuronidase activity) and leukocyte invasion in the ECC/-L-NAME group as compared to the ECC/+L-NAME group. One day after ECC, calpain activity was significantly increased in ECC/-L-NAME compared with control muscles (p < 0.05). On days 3 and 7, Myo-D and myogenin gene expression was increased in both groups; however, the degree of regeneration was less in the ECC/+L-NAME-treated animals. These data suggest that NO dynamics have important implications in the regulation of various factors during skeletal muscle regeneration following damaging eccentric muscle contractions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 4%
South Africa 1 4%
Unknown 26 93%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 25%
Student > Ph. D. Student 5 18%
Researcher 4 14%
Student > Bachelor 2 7%
Student > Doctoral Student 1 4%
Other 5 18%
Unknown 4 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 32%
Sports and Recreations 3 11%
Biochemistry, Genetics and Molecular Biology 2 7%
Medicine and Dentistry 2 7%
Unspecified 1 4%
Other 4 14%
Unknown 7 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2016.
All research outputs
#16,272,032
of 23,975,976 outputs
Outputs from The Journal of Physiological Sciences
#163
of 321 outputs
Outputs of similar age
#126,614
of 199,984 outputs
Outputs of similar age from The Journal of Physiological Sciences
#1
of 4 outputs
Altmetric has tracked 23,975,976 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 321 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 199,984 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them