↓ Skip to main content

Interaction of rat alveolar macrophages with dental composite dust

Overview of attention for article published in Particle and Fibre Toxicology, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interaction of rat alveolar macrophages with dental composite dust
Published in
Particle and Fibre Toxicology, November 2016
DOI 10.1186/s12989-016-0174-0
Pubmed ID
Authors

K. L. Van Landuyt, S. M. Cokic, C. Asbach, P. Hoet, L. Godderis, F. X. Reichl, B. Van Meerbeek, A. Vennemann, M. Wiemann

Abstract

Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 μm) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. ​METHODS: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-μm-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 μg/ml, 45 μg/ml, 90 μg/ml and 180 μg/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-α, and H2O2. Characterization of the suspended particles revealed numerous nano-sized particles but also many high volume particles, most of which could be removed by filtering. Even at the highest concentration (180 μg/ml), cells completely cleared settled particles from the bottom of the culture vessel. Accordingly, a mixture of nano- and micron-scaled particles was observed inside cells where they were confined to phagolysosomes. The filtered particle fractions elicited largely uniform dose-dependent responses, which were elevated compared to the control only at the highest concentration, which equaled a mean cellular dose of 120 pg/cell. A low inflammatory potential was identified due to dose-dependent release of H2O2 and TNF-α. However, compared to the positive control, the released levels of H2O2 and TNF-α were still moderate, but their release profiles depended on the type of composite. Alveolar macrophages are able to phagocytize respirable composite dust particle inclusive nanoparticles. Since NR8383 cells tolerate a comparatively high cell burden (60 pg/cell) of each of the five materials with minimal signs of cytotoxicity or inflammation, the toxic potential of respirable composite dust seems to be low. These results are reassuring for dental personnel, but more research is needed to characterize the actual exposure and uptake especially of the pure nano fraction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 11%
Researcher 5 11%
Student > Bachelor 5 11%
Student > Postgraduate 3 7%
Unspecified 2 4%
Other 7 16%
Unknown 18 40%
Readers by discipline Count As %
Medicine and Dentistry 11 24%
Unspecified 2 4%
Biochemistry, Genetics and Molecular Biology 2 4%
Agricultural and Biological Sciences 2 4%
Immunology and Microbiology 2 4%
Other 7 16%
Unknown 19 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2016.
All research outputs
#17,828,338
of 22,903,988 outputs
Outputs from Particle and Fibre Toxicology
#394
of 561 outputs
Outputs of similar age
#287,379
of 416,268 outputs
Outputs of similar age from Particle and Fibre Toxicology
#10
of 18 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 561 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.2. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,268 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.