↓ Skip to main content

Leucine-rich repeat kinase 2 (LRRK2) regulates α-synuclein clearance in microglia

Overview of attention for article published in BMC Neuroscience, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
102 Mendeley
citeulike
5 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Leucine-rich repeat kinase 2 (LRRK2) regulates α-synuclein clearance in microglia
Published in
BMC Neuroscience, November 2016
DOI 10.1186/s12868-016-0315-2
Pubmed ID
Authors

Tatsunori Maekawa, Toshikuni Sasaoka, Sadahiro Azuma, Takafumi Ichikawa, Heather L. Melrose, Matthew J. Farrer, Fumiya Obata

Abstract

α-Synuclein (αSYN) has been genetically implicated in familial and sporadic Parkinson's disease (PD), and is associated with disease susceptibility, progression and pathology. Excess amounts of αSYN are toxic to neurons. In the brain, microglial αSYN clearance is closely related to neuronal survival. Leucine-rich repeat kinase 2 (LRRK2) is the one of the other genes implicated in familial and sporadic PD. While LRRK2 is known to be expressed in microglia, its true function remains to be elucidated. In this study, we investigated αSYN clearance by microglia isolated from LRRK2-knockout (KO) mice. In LRRK2-KO microglia, αSYN was taken up in larger amounts and cleared from the supernatant more effectively than for microglia isolated from wild-type (WT) mice. This higher clearance ability of LRRK2-KO microglia was thought to be due to an increase of Rab5-positive endosomes, but not Rab7- or Rab11-positive endosomes. Increased engagement between Rab5 and dynamin 1 was also observed in LRRK2-KO microglia. LRRK2 negatively regulates the clearance of αSYN accompanied by down-regulation of the endocytosis pathway. Our findings reveal a new functional role of LRRK2 in microglia and offer a new insight into the mechanism of PD pathogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 102 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 102 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 22%
Student > Master 16 16%
Researcher 13 13%
Student > Doctoral Student 7 7%
Student > Bachelor 7 7%
Other 14 14%
Unknown 23 23%
Readers by discipline Count As %
Neuroscience 28 27%
Agricultural and Biological Sciences 15 15%
Medicine and Dentistry 14 14%
Biochemistry, Genetics and Molecular Biology 10 10%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Other 6 6%
Unknown 25 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2016.
All research outputs
#2,833,351
of 22,903,988 outputs
Outputs from BMC Neuroscience
#99
of 1,247 outputs
Outputs of similar age
#57,896
of 415,970 outputs
Outputs of similar age from BMC Neuroscience
#6
of 32 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,247 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,970 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.